Remote Sensing | |
Separating Mangrove Species and Conditions Using Laboratory Hyperspectral Data: A Case Study of a Degraded Mangrove Forest of the Mexican Pacific | |
Chunhua Zhang1  John M. Kovacs3  Yali Liu4  Francisco Flores-Verdugo5  Francisco Flores-de-Santiago6  Randolph H. Wynne2  | |
[1] Department of Geography and Geology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON P6A 2G4, Canada;id="af1-remotesensing-06-11673">Department of Geography and Geology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON P6A 2G4, Cana;Department of Geography, Nipissing University, 100 College Drive, North Bay, ON P1B 8L7, Canada; E-Mail:;Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614, USA; E-Mail:;Instituto del Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, SIN 82040, México; E-Mail:;Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, A.P. 70-305, Av. Universidad 3000, Ciudad Universitaria, Coyoacán D.F. 04510, México; E-Mail: | |
关键词: mangrove; degradation; hyperspectral remote sensing; classification; Mexico; | |
DOI : 10.3390/rs61211673 | |
来源: mdpi | |
【 摘 要 】
Given the scale and rate of mangrove loss globally, it is increasingly important to map and monitor mangrove forest health in a timely fashion. This study aims to identify the conditions of mangroves in a coastal lagoon south of the city of Mazatlán, Mexico, using proximal hyperspectral remote sensing techniques. The dominant mangrove species in this area includes the red (
【 授权许可】
CC BY
© 2014 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190019469ZK.pdf | 2704KB | download |