期刊论文详细信息
Entropy
Consistency of Learning Bayesian Network Structures with Continuous Variables: An Information Theoretic Approach
Joe Suzuki1 
[1] Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka-shi 560-0043, Japan; E-Mail
关键词: posterior probability;    consistency;    minimum description length;    universality;    discrete and continuous variables;    Bayesian network;   
DOI  :  10.3390/e17085752
来源: mdpi
PDF
【 摘 要 】

We consider the problem of learning a Bayesian network structure given n examples and the prior probability based on maximizing the posterior probability. We propose an algorithm that runs inis arbitrary, which implies that the Hannan–Quinn proposition holds.

【 授权许可】

CC BY   
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190008288ZK.pdf 346KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:5次