Journal of Mathematical Sciences | |
Fake Congruence Subgroups and the Hurwitz Monodromy Group | |
Berger, Gabriel1  | |
关键词: Burau representation; fake congruence subgroup; Hurwitz space; modular tower; | |
DOI : | |
学科分类:数学(综合) | |
来源: University of Tokyo * Department of Mathematical Sciences | |
【 摘 要 】
Suppose$G$isafinitegroup,embeddedasatransitivesubgroupof$S_n$forsome$n$.Supposeinadditionthat$(mathcal{C}_1,dots,mathcal{C}_4)$isaquadrupleofconjugacyclassesof$G$.Inearlierpapers([F],[D-F],[B-F]),itwasshownthattothesedataonecancanonicallyassociateafiniteindexsubgroupof$PSL_2(mathbb{Z})$.Forexample,when$N$isanoddinteger,$G$isthedihedralgroup$D_N$andtheconjugacyclassesallconsistofinvolutions,theassociatedsubgroupis$Î_0(N).$Inthispaperweinvestigatethecaseinwhich$G$isthesemidirectproductoftheabeliangroup$mathbb{Z}[ζ_d]/mathcal{N}$(where$ζ_d$isaprimitive$d$'throotofunityand$mathcal{N}$isanidealof$mathbb{Z}[ζ_d]$relativelyprimeto$d$)andthecyclicgroup$langleζ_dangle$.Werelatethecorrespondingsubgroupof$PSL_2(mathbb{Z})$tothe"fakecongruencesubgroups"describedincite{B2}.Specifically,ifwelet$mathcal{C}$denotetheconjugacyclassof$ζ_d$inthemultiplicativesubgroup$langleζ_dangle$andchooseourconjugacyclassestobe$(mathcal{C},mathcal{C},mathcal{C},mathcal{C}^{-3}),$thenthesubgroupisinfact$Î_0(mathcal{N})$(definedoriginallyincite{B2};seesection2).
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912090769730ZK.pdf | 143KB | download |