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Fake Congruence Subgroups and

the Hurwitz Monodromy Group

By Gabriel Berger

Abstract. Suppose G is a finite group, embedded as a transitive
subgroup of Sn for some n. Suppose in addition that (C1, . . . , C4) is
a quadruple of conjugacy classes of G. In earlier papers ([F], [D-F],
[B-F]), it was shown that to these data one can canonically associate
a finite index subgroup of PSL2(Z). For example, when N is an odd
integer, G is the dihedral group DN and the conjugacy classes all con-
sist of involutions, the associated subgroup is Γ0(N). In this paper we
investigate the case in which G is the semidirect product of the abelian
group Z[ζd]/N (where ζd is a primitive d’th root of unity and N is an
ideal of Z[ζd] relatively prime to d) and the cyclic group 〈ζd〉. We relate
the corresponding subgroup of PSL2(Z) to the “fake congruence sub-
groups” described in [B2]. Specifically, if we let C denote the conjugacy
class of ζd in the multiplicative subgroup 〈ζd〉 and choose our conjugacy
classes to be (C, C, C, C−3), then the subgroup is in fact Γ0(N ) (defined
originally in [B2]; see section 2).

The author wishes to express his thanks to Takayuki Oda for introduc-

ing fake congruence subgroups and to Mike Fried for valuable discussions

regarding Hurwitz spaces and connections with the modular group. We

note that similar topics have been considered earlier by Helmut Voelklein,

whose primary interest was the realization of certain finite groups of Lie

type as Galois groups over Q.

1. Introduction

In [F], [D-F] and [B-F], a new method of obtaining finite index subgroups

of PSL2(Z) was introduced. This method allows us to interpret (possibly

noncongruence) modular curves as reduced Hurwitz spaces of 4 branch point

coverings of the Riemann sphere with specified ramification data. The

prototypical example of this is the following early result of Fried ([F2]):

1991 Mathematics Subject Classification. Primary 11F06; Secondary 20F36.

Key words: Burau representation, fake congruence subgroup, Hurwitz space, modular tower.

559



560 Gabriel Berger

Theorem 1. Suppose N is an odd, positive integer. Let DN by the

dihedral group of order 2N , and let C be the conjugacy class of involutions.

Embed DN in SN by taking the permutation representation on the cosets of a

subgroup of order 2. Then the reduced Hurwitz space of coverings of P1 with

4 branch points and ramification data (DN , C, C, C, C) is Y0(N) = Γ0(N)\h.
(See §2 for definitions and details).

In this paper, we generalize Fried’s result, giving the first known explicit

infinite family of noncongruence modular curves with moduli space inter-

pretations. We first replace DN = Z/NZ � Z/2Z by Z[ζd]/N � 〈ζd〉, where

ζd is a primitive d’th root of unity and N is an ideal of Z[ζd] prime to d.

(By Z[ζd]/N , we are referring to the additive group of the ring.) We then

show that for a suitable choice of ramification data, the corresponding re-

duced Hurwitz space is equal to Y0(N ), the (noncompact) fake congruence

modular curve of [B2]. As N varies over powers of a prime p, we obtain a

modular tower (see [F2]).

The contents of the paper are as follows: in section 2, we review the

definition of fake congruence subgroups (see [B2]). In section 3, we review

the basic theory of Hurwitz spaces of four branched coverings of the projec-

tive line and their connection with finite-index subgroups of the modular

group. In section 4, we describe the group and conjugacy classes to be used

in connection with fake congruence subgroups. In section 5, we show how

to identify reduced, absolute Nielson classes corresponding to the data of

section 4 with P1(Z[ζd]/N ). In section 6, we show how the results of section

5 imply that Y0(N ) is a reduced Hurwitz space, generalizing Fried’s result.

We also consider the case in which G is a centerless semi-direct product of

two cyclic groups. Finally, in section 7, we show that letting N vary over

powers of certain primes, we obtain a modular tower in the sense of Fried.

2. Construction of the Γ(N )

2.1. Fake congruence subgroups

To begin with, we fix natural numbers d > 2 and N , a primitive d’th

root of unity ζd, and an ideal N of Z[ζd] relatively prime to d.

Let Bn denote the Artin braid group

〈σ1, . . . σn−1 : σiσj = σiσjfor | i− j |> 1 and σiσi+1σi = σi+1σiσi+1〉.
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The reduced Burau representation (see [Bi]) is a homomorphism πn : Bn →
GLn−1(Z[t, t−1]). It can be obtained, among other methods, via the Fox

free calculus, or from the action of Bn on the homology of an infinite cyclic

extension of P1 ramified over n + 1 points. Its action on the generators of

Bn is given as follows:

σ1 
→



−t 1 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

0 . . . . . . . . . 0

0 0 0 0 1


 ,

σr 
→




1r−2 0 . . . 0 0

0 1 0 . . . 0

. . . t −t 1 0

. . . 0 0 1 0

0 0 . . . 0 1n−r−2


 (1 < r < n− 1)

and

σn−1 
→




1 0 . . . 0 0

0 1 . . . 0 0

0 . . . . . . . . . 0

0 0 . . . 1 0

0 0 . . . t −t


 .

Setting t = ζd and reducing modulo N gives us a map Z[t, t−1] →
Z[ζd]/N , and hence a map GLn−1(Z[t, t−1]) → GLn−1(Z[ζd]/N ). We then

obtain a new map

πn,N : Bn → GLn−1(Z[ζd]/N )

by composing with the Burau representation.

Now suppose n = 3. In this case we can describe our map is as follows.

First, notice that B3 has presentation 〈σ1, σ2 : σ1σ2σ1 = σ2σ1σ2〉. Then

π3,N is given by

σ1 →
(
−ζd 1

0 1

)
(1)

σ2 →
(

1 0

ζd −ζd

)
,(2)
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where we understand the matrix entries to be elements of Z[ζd]/N .
Recall [Bi] that Z(B3) is generated by (σ1σ2)

3, and observe that

π3,N ((σ1σ2)
3) =

(
ζ3d 0

0 ζ3d

)
.

Thus π3,N induces a map

(3) πN : PSL2(Z) = B3/Z(B3) → PGL2(Z[ζd]/N ).

Definition 1. We have the following analogs of congruence groups

and modular curves:

1. Γ(N ) = ker(πN )

2. Γ0(N ) = {γ ∈ PSL2(Z) : πN (γ)∞ = ∞ (where we take ∞ ∈
P1(Z[ζd]/N )

3. X(N ) = h∗/Γ(N )

4. X0(N ) = h∗/Γ0(N )

5. Y (N ) = h/Γ(N )

6. Y0(N ) = h/Γ0(N )

Any subgroup of PSL2(Z) that contains Γ(N ) for some N with d �= 2 will

be called a fake congrunce subgroup.

If d = 2, we obtain the usual congruence objects with N replaced by N .

3. Hurwitz Spaces of Four-Branch Point Coverings and Fake

Congruence Subgroups

3.1. Review of Hurwitz spaces

The references for this section are [F-V], [D-F] and [B-F]. Let G be a

finite group embedded as a transitive subgroup of Sn for some positive

integer n. Let C = (C1, . . . , C4) be a quadruple of conjugacy classes of G.

We are interested in parametrizing coverings of P1 (over C) ramified over

four points with monodromy group G and ramification data C. To do so,

we introduce the following definitions.
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Definition 2. We set U4 = {(z1, . . . , z4) ∈ (P1)4 : zi �= zj for i �=
j}, and let U4 = U4/S4 denote the natural quotient. The Nielsen class

Ni(G,C) associated to the data (G,C) is

(4) {(g1, . . . , g4) ∈ G4 : 〈g1, . . . , g4〉 = G, g1 · · · g4 = 1

and there exists σ ∈ S4 such that gi ∈ Ciσ (i = 1, 2, 3, 4)}.

We also set Ni(G,C)abs = Ni(G,C)/NSn(C), where NSn(C) is the normal-

izer of C in Sn, and the action of NSn(C) is the diagonal conjugate action.

Finally, the Hurwitz monodromy group H4 is defined to be the fundamental

group of U4. It has the following presentation:

〈Q1, Q2, Q3 : QiQi+1Qi = Qi+1QiQi+1,

Q1Q3 = Q3Q1, Q1Q2Q3Q3Q2Q1 = 1〉.

We have an action of H4 on Ni(G,C)abs as follows: if (g1, . . . , g4) ∈
Ni(G,C)abs, then

(g1, . . . , g4) Qi = (g1, . . . , gi−1, gigi+1g
−1
i , gi, gi+2, . . . , g4).

(Thus Qi sends gi to gigi+1g
−1
i , sends gi+1 to gi, and fixes the other two

elements of the quadruple.) It is easily verified that the action of H4 on

Ni(G,C)abs factors through to H4/Z(H4).

Since H4 is the fundamental group of U4, each of its orbits on

Ni(G,C)abs corresponds to a connected covering of U4. Let H(G,C) denote

the disjoint union of these coverings.

Theorem 2 ([F-V]). H(G,C) is a coarse moduli space for coverings

of P1 with monodromy group G and ramification data C.

In fact, this theorem holds for coverings with an arbitrary number of

branch points.
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3.2. PSL2(C) action

We have canonical PSL2(C) actions on U4, U4, and H = H(G,C) as

above: if γ ∈ PSL2(C), then γ(a, b, c, d) = (γa, γb, γc, γd). Also, γ acts

on the set of coverings by attaching to φ : X → P1 the new covering

γ ◦ φ. We denote the quotients of these actions by U4 red, U red
4 , and Hred,

respectively.

Lemma 1 ([K]). PSL2(Z) is generated by

S1 =

(
1 1

0 1

)
and S2 =

(
1 0

−1 1

)
.

It is the free product of the cyclic groups of orders two and three (respec-

tively) generated by

S1S2 =

(
0 1

−1 1

)
and S2S1S2 =

(
0 −1

1 0

)

(respectively).

Proposition 1 ([F] Theorem 3.3, [D-F]). There is a surjective homo-

morphism

φ : H4 → PSL2(Z)

given by

φ(Q1) = S1 =

(
1 1

0 1

)
, φ(Q2) = S2 =

(
1 0

−1 1

)
,

φ(Q3) = S =

(
1 1

0 1

)
.

The kernel is the quaternion group Q8 of order 8. Furthermore,

H4/Z(H4) ∼= K4 � PSL2(Z), where K4 is the Klein group of order 4 gen-

erated by (Q1Q2Q3)
2 and Q1Q

−1
3 .

Since H4/Z(H4) ∼= K4 � PSL2(Z) acts on Ni(G,C)abs, we obtain a

natural quotient action of PSL2(Z) on Ni(G,C)abs/K4.
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Theorem 3 ([B-F]). Suppose HO is a connected component of H.

Then there exists a subgroup ∆ of finite index in PSL2(Z) such that we

have the following commutative diagram:

H red
O −−−→ h/∆
 


U red
4 −−−→ h/PSL2(Z)

The horizontal maps are isomorphisms, and the bottom isomorphism is ob-

tained by taking any {a,b,c,d} to the unique (up to isomorphism) ellip-

tic curve ramified over {a,b,c,d}. Furthermore, ∆ arises as follows: by

construction, H red
O corresponds to the orbit of x ∈ Ni(G,C)abs under

the action of H4/Z(H4). Then ∆ is the stabilizer of the image of x in

Ni(G,C)abs/K4.

3.3. Motivating questions

The above results naturally lead to certain natural questions.

1. Given the data of a finite group and four conjugacy classes, how can

one tell whether the resulting finite index subgroup of PSL2(Z) is

congruence or not? About this, very little is known, although one

expects that in most cases, the subgroup will be noncongruence.

2. Does every finite index subgroup of PSL2(Z) arise through the above

procedure? The only result on this to date is that of Diaz-Donagi-

Harbater [D-D-H], which implies that every quotient curve h∗/∆
(where ∆ has finite index in PSL2(Z) is a Hurwitz space. Since

many ∆ can give rise to the isomorphic quotient curves, however,

our question remains unanswered.

3. Is our original data (the group and four conjugacy classes) reflected

in any way in the arithmetic associated to the resulting subgroup

of PSL2(Z)? Traditional methods of studying congruence sub-

groups (basically, the theory of Hecke operators) fail completely

in the noncongruence setting. Thus nothing so simple as examining

the Fourier coefficients of a Hauptmodul or cusp form (these coef-

ficients will in general have larger numerators and denominators)

will suffice in this case. It seems, therefore, that more examples are

needed.
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4. The Group

Our general set up is as follows. Suppose d ≥ 1 is an integer, and ζd
is a primitive d’th root of unity. Let N be an ideal of Z[ζd] coprime to d,

and by abuse of notation, continue to denote the image of ζd in Z[ζd]/N by

ζd. Subsequently, by Z[ζd]/N we will mean the additive group of Z[ζd]/N
unless otherwise noted; (Z[ζd]/N )∗ will denote the multiplicative group of

(the ring) Z[ζd]/N . We can embed (Z[ζd]/N )∗ into the automorphism group

of Z[ζd]/N by setting γ(x) = γx for γ ∈ (Z[ζd]/N )∗ and x ∈ Z[ζd]/N . Thus

we may form the semidirect product

Z[ζd]/N � (Z[ζd]/N )∗.

This group is generated by Z[ζd]/N and symbols [γ] for γ ∈ (Z[ζd]/N )∗,
with the relations

[γ][α] = [γα] for α ∈ (Z[ζd]/N )∗ and [γ]−1t[γ] = γt for t ∈ Z[ζd]/N .

(In the second equality, the left-hand multiplication is in Z[ζd]/N �
(Z[ζd]/N )∗, and the right-hand multiplication is in the ring Z[ζd]/N .) Let

G be the subgroup Z[ζd]/N � 〈ζd〉 of Z[ζd]/N � (Z[ζd]/N )∗.
Notice that Z[ζd]/N � (Z[ζd]/N )∗ acts on Z[ζd]/N as a set: the additive

group Z[ζd]/N acts upon itself by addition, and the multiplicative group

(Z[ζd]/N )∗ acts on Z[ζd]/N by multiplication. Thus if #Z[ζd]/N = N, we

obtain an embedding of Z[ζd]/N � (Z[ζd]/N )∗ and its subgroup G into SN ,

given as follows: if t ∈ Z[ζd]/N and x[γ] ∈ Z[ζd]/N � (Z[ζd]/N )∗, then x[γ]

acts on t via

t(x[γ]) = (t+ x)[γ].

Identify Z[ζd]/N � (Z[ζd]/N )∗ and G with their images in SN . Let C be

the conjugacy class of [ζd]. Set C = (C1, . . . , C4) = (C, C, C, C−3).

Proposition 2. NSN
(C) = {x ∈ SN : xGx−1 = G, xCx−1 = C} =

Z[ζd]/N � (Z[ζd]/N )∗.

Proof. Suppose σ ∈ NSN
(C). Then σ−1[ζd]σ = (−t)[ζd]t for some

t ∈ Z[ζd]/N . Furthermore, a calculation reveals that if x ∈ Z[ζd]/N and

[ζd]
i �= 1, then

([ζd]
ix)n = [ζd]

ni(
ζnid − 1

ζid − 1
x).
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Thus the order of [ζd]
ix is equal to the order of [ζd]

i, which is prime to

the order of Z[ζd]/N . Hence, since conjugation doesn’t change the order of

an element in Z[ζd]/N , conjugation by σ restricts to an automorphism of

Z[ζd]/N . Thus σ−1 · 1 · σ = a for some a ∈ Z[ζd]/N . But then

σ−1 · ζid · σ = σ−1 · ([ζd]−i1[ζd]
i) · σ(5)

= (−t)[ζd]−i(t) · a · (−t)[ζd]i(t)(6)

= (−t)[ζd]−i(a)[ζd]
i(t)(7)

= −t+ ζida+ t = ζida = aζid.(8)

Since conjugation by σ is an automorphism of the additive group Z[ζd]/N ,

we see that σ−1xσ = ax for any x ∈ Z[ζd]/N . Furthermore, since conju-

gation by σ has an inverse, we see that a must be in (Z[ζd]/N )∗. We now

claim that conjugation by σ has the same action on G as conjugation by

[a]t. If suffices to verify this for [ζd] and for elements of Z[ζd]/N separately.

First, [ζd]:

(−t)[a]−1[ζd][a](t) = (−t)[ζd]t = σ−1[ζd]σ.

Next, if x ∈ Z[ζd]/N , then

(−t)[a]−1x[a](t) = (−t) + ax+ t = ax.

Thus [a](t)σ−1 centralizes G. To conclude the proof, we need only the

following:

Lemma 2. The centralizer of G in SN is trivial.

Proof. We identify SN with the permutations (as a set) of Z[ζd]/N .

Suppose γ ∈ SN centralizes G. Then [ζd]γ = γ[ζd], and xγ = γx for all

x ∈ Z[ζd]/N . Thus if y ∈ Z[ζd]/N , then letting the above elements act on

y, we obtain

(yζd)γ = (y)γζd, and (x+ y)γ = yγ + x.

So for all y ∈ Z[ζd]/N ,

(yγ)ζd = (yζd)γ = (y(ζd − 1) + y)γ = yγ + y(ζd − 1).

Thus (yγ)(ζd − 1) = y(ζd − 1). But since N and d are coprime, ζd − 1 is a

unit in (the ring) Z[ζd]/N . So yγ = y, and so γ is the identity element. � �
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5. Identification with P1(Z[ζd]/N )

Lemma 3. Ni(G, C1, . . . , C4)/K4 may be identified with the set

T (Z[ζd]/N ) = {(a, b, c) ∈ (Z[ζd]/N )3 :

(b− a)Z[ζd]/N + (c− b)Z[ζd]/N = Z[ζd]/N}

The action of Z[ζd]/N � (Z[ζd]/N )∗ on T (Z[ζd]/N ) is as follows: if t ∈
Z[ζd]/N , then (a, b, c)t = (a + t, b + t, c + t). If s ∈ (Z[ζd]/N )∗, then

(a, b, c)s = (as, bs, cs).

Proof. Since there exists a unique element of K4 such that the fourth

coordinate is conjugate to [ζd]
−3, any element of Ni(G, C1, . . . , C4)/K4 has

a unique representative of the form

((−a)[ζd]a, (−b)[ζd]b, (−c)[ζd]c, (−e)[ζd]−3e)

for some a, b, c, e ∈ Z[ζd]/N . We identify this with the element (a, b, c),

which we must show is in T (Z[ζd]/N ). Note that the group

〈(−a)[ζd]a, (−b)[ζd]b, (−c)[ζd]c, (−e)[ζd]−3e〉 ∩ Z[ζd]/N

is generated by elements of the form

(−a)[ζd]ia · (−b)[ζd]ib = (1 − ζ−i
d )(b− a)

and

(−b)[ζd]ib · (−c)[ζd]ic = (1 − ζ−i
d )(c− b).

But recall that d is prime to N . Thus

〈(−a)[ζd]a, (−b)[ζd]b, (−c)[ζd]c, (−e)[ζd]−3e〉 ∩ Z[ζd]/N

is equal to

(b− a)Z[ζd]/N + (c− b)Z[ζd]/N .

But clearly

〈(−a)[ζd]a, (−b)[ζd]b, (−c)[ζd]c, (−e)[ζd]−3e〉 = G
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if and only if

〈(−a)[ζd]a, (−b)[ζd]b, (−c)[ζd]c, (−e)[ζd]−3e〉 ∩ Z[ζd]/N = Z[ζd]/N .

Thus

〈(−a)[ζd]a, (−b)[ζd]b, (−c)[ζd]c, (−e)[ζd]−3e〉 = G

if and only if

(b− a)Z[ζd]/N + (c− b)Z[ζd]/N = Z[ζd]/N .

The rest of the lemma is clear. �

Lemma 4. The action of PSL2(Z) on T (Z[ζd]/N ) is given by

(a, b, c)S1 = (ζd(b− a) + a, a, c)

(a, b, c)S2 = (a, ζd(c− b) + b, b)

Proof.

((−a)[ζd]a, (−b)[ζd]b, (−c)[ζd]c, (−e)[ζd]−3e)S1

=(−a+ ζ−1
d (a− b) · [ζd] · [ζd] · [ζd]−1(ζ−1

d (b− a) + a),

(−a)[ζd]a, (−c)[ζd]c, (−e)[ζd]−3e)

and

((−a)[ζd]a, (−b)[ζd]b, (−c)[ζd]c, (−e)[ζd]−3e)S1

=((−a)[ζd]a,−b+ ζ−1
d (b− c) · [ζd] · [ζd] · [ζd]−1

(ζ−1
d (c− b) + b), (−b)[ζd]b, (−e)[ζd]−3e).

The result follows. �

Note that the above action factors through to T (Z[ζd]/N )/NSN
(C).

Proposition 3. The following are isomorphic as PSL2(Z)-sets:

1. Ni(G, C1, . . . , C4)
abs/K4

2. T (Z[ζd]/N )/NSN
(C)

3. P1(Z[ζd]/N ), with PSL2(Z) action given through the Burau repre-

sentation πN : PSL2(Z) → PGL2(Z[ζd]/N ).
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Proof. The equivalence of 1 and 2 follows from lemmas 3 and 4

above. To show the equivalence of 2 and 3, first note that every element

in T (Z[ζd]/N )/NSN
(C) has a representative of the form (0, a, b). Define a

map

Ψ : T (Z[ζd]/N )/NSN
(C) → P1(Z[ζd]/N )

by

Ψ(0, a, b) = [b− a,−[ζd]a].

This is clearly well-defined and injective. To show that it’s surjective, note

that (x, y) ∈ (Z[ζd]/N )2 defines an element of P1(Z[ζd]/N ) if and only if

x(Z[ζd]/N ) + y(Z[ζd]/N ) = Z[ζd]/N .

But this holds if and only if

(−1/[ζd])y(Z[ζd]/N ) + (x− 1/[ζd] · y)(Z[ζd]/N ) = Z[ζd]/N ,

and so by lemma 3, (−1/[ζd] · y, x − 1/[ζd] · y) is a preimage of [x, y] ∈
P1(Z[ζd]/N ) in T (Z[ζd]/N )/NSN

(C).

We must now show that the group actions are compatible. Note that

Ψ((0, a, b)S1) = Ψ(ζ−1
d a, 0, b) = Ψ(0,−ζ−1

d a, b− ζ−1
d a) = [b, a]

and

(Ψ(0, a, b))S1 = [b− a,−ζda]S1 = [−ζdb,−ζda] = [b, a].

Similarly,

Ψ((0, a, b)S2) = Ψ(0, ζ−1
d (b− a) + a, a)(9)

=[ζ−1
d (a− b), (a− b) − ζda] = [b− a, ζd(b− a) + ζ2da](10)

and

(Ψ(0, a, b))S2 = [b− a,−[ζd]a]S2 = [b− a, [ζd](b− a) + [ζd]
2a].

This completes the proof. �
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6. Relations with Fake Congruence Groups

6.1. The main theorems

Suppose d and N are relatively prime natural numbers and that there

exists an integer b of (multiplicative) order d mod N . We may then form

the semi-direct product

Z/NZ � Z/dZ = {γ, t : γd = tN = 1, γ−1tγ = tb}.

Lemma 5. Z/NZ � Z/dZ has trivial center if and only if b− 1 and N

are coprime.

Proof. Suppose tjγi is an element of the center of Z/NZ � Z/dZ for

some nonnegative integers j < N and i < d. We first show that tjγi ∈
Z/NZ, i.e., that i = 0. Since tjγi ∈ Z/NZ � Z/dZ, we must have

t−1 · tjγi · t = tjγi.

But

t−1 · tjγi · t = tj · t−1γi · t = tjγit−bi+1.

Thus t−bi+1 = 1, or bi ≡ 1 mod N . Since b has order d, d must divide i, so

i must equal 0.

So the only elements in the center of Z/NZ � Z/dZ are powers of t.

But for j < N , tj is central if and only if γ−1tjγ = tj , or equivalently,

tj(b−1) = 1. But this occurs precisely when N divides j(b−1). Finally, such

a j exists if and only if j = 0 or gcd(N, b− 1)> 1. �

Theorem 4. A) Suppose d ≥ 2 is a positive integer, ζd is a primitive

d’th root of unity, and N is an ideal of Z[ζd] relatively prime to d. Let

G = Z[ζd]/N � 〈ζd〉 and suppose C is the conjugacy class of [ζd] in G.

Then Y0(N ) (see §2 for the definition of Y0(N ) is a reduced Hurwitz space

for coverings of P1 ramified over 4 points with monodromy group G and

ramification data (C, C, C, C−3).

B) Suppose d ≥ 2 is a positive integer, and N is a positive integer

relatively prime to d. Suppose b is an integer with multiplicative order d

mod N . Let

G = Z/NZ � Z/dZ = {γ, t : γd = tN = 1, γ−1tγ = tb},
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and suppose G has trivial center. Let C be the conjugacy class of γ. Suppose

ζd is a primitive root of unity and that N is the ideal (N, ζd − b). Then

Y0(N ) is a reduced Hurwitz space for coverings of P1 ramified over 4 points

with monodromy group G and ramification data (C, C, C, C−3).

Proof. A) follows directly from theorem 3 and proposition 3.

Since Z[ζd]/N ∼= Z/MZ, where

M =
N

gcd(N, 1 − b) ,

we have Z[ζd]/N ∼= Z/NZ under the conditions of the theorem. Thus B)

follows from A). �

6.2. Geometric interpretation

Recall that that Y0(N) parametrizes elliptic curves together with an

isogeny of degree N . Equivalently (by Fried’s theorem), for N odd, Y0(N)

parametrizes equivalence classes of diagrams of the form

E′ α−−−→ E
 

P1 β−−−→ P1

,

where E′ and E are elliptic curves, the vertical maps are of degree 2 and are

ramified over four points, and α is an isogeny of degree N . We require the

map β to be non-Galois of degree N , with Galois closure E′ and monodromy

group DN . This then implies that β has ramification data as in theorem 1.

Finally, we consider two diagrams to be equivalent if and only if the lower

horizontal maps are equivalent mod PSL2(C).

Theorem 4A then states that Y0(N ) parametrizes equivalence classes of

diagrams of the following form:

Y
α−−−→ X
 
γ

W
β−−−→ P1

.

We require all maps to be ramified over 4 points, and the vertical maps

to be Galois, with monodromy group Z/dZ = 〈ζd〉. In addition, the map
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γ should have ramification data of the form (ζd, ζd, ζd, ζ
−3
d ) (here, ζd is its

own conjugacy class in Z/dZ = 〈ζd〉). Furthermore, α must be Galois with

group Z[ζd]/N . Finally, in the notation of theorem 4A, we require β to

have monodromy group G and ramification data (C, C, C, C−3).

We note that once we specify the map β, Y and X will be uniquely

determined. Two diagrams are considered to be equivalent if and only if

the lower horizontal maps are equivalent mod PSL2(C).

7. Modular Towers

We now interpret our results in terms of Fried’s concept of modular tower

([F2], [F-K]). Suppose G is a finite group and that p is a prime dividing

the order of G. We follow the notation of [F2]: pG̃ denotes the universal

p-Frattini cover of G, and n
p G̃ denotes the n’th characteristic quotient of

pG̃. Fix an integer d ≥ 2, and a prime p in Z[ζd] lying over a rational prime

integer p. For any natural number n, let G(pn) denote the semi-direct

product Z[ζd]/p
n � 〈ζd〉.

Proposition 4. For all natural numbers n, pG̃(pn) = Z[ζd]p � 〈ζd〉. If

pZ[ζd] = p, then n
p G̃(p1) = G(pn+1).

Proof. The first statement follows from the fact (see [F2]) that pG̃ is

the smallest Frattini cover of G with a projective p- Sylow subgroup. The

second follows from the fact that n
p G̃(p1) = pG̃(p1)/pnp = pG̃(p1)/pn+1. �

Thus if pZ[ζd] = p, we obtain a modular tower

· · · → X0(p
n+1) → X0(p

n) → . . .

of reduced Hurwitz spaces.
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