期刊论文详细信息
Journal of Biomechanical Science and Engineering
Dynamics of actin filaments of MC3T3-E1 cells during adhesion process to substrate
Shukei SUGITA1  Kazuaki NAGAYAMA1  Takeo MATSUMOTO1  Junfeng WANG1 
[1] Department of Mechanical Engineering, Nagoya Institute of Technology
关键词: Cytoskeleton;    Actin aggregate;    Actin filament;    Morphology;    MC3T3-E1;    Adhesion;   
DOI  :  10.1299/jbse.15-00637
来源: Japan Society of Mechanical Engineers
PDF
【 摘 要 】

References(20)Cited-By(1)In order to determine how cells change their morphology during adhesion process to a substrate, we focused on the actin cytoskeleton and investigated its morphological change along with that of the whole cell during adhesion process.An osteoblastic cell line MC3T3-E1 was used as the test model.We plated cells whose cell cycle had been synchronized by serum starvation on fibronectin-coated glass plate and cultured them for 10 min to 24 h.We then stained their F-actin and nucleus and observed them with a fluorescent microscope for cell area and shape index and 2D parameters for actin morphology, and with a laser scanning microscope for 3D morphology of actin and nucleus.In the beginning of adhesion, the trypsinized cells were round and their nuclei were surrounded uniformly by thick layer of actin.The actin layer in the upper side became actin aggregate (AA) and lower side dense peripheral band (DPB) in 30 min.The upper AA then became smaller and finally to actin filaments (AFs) spanning the cell top.The DPB expanded and finally became AFs on cell bottom by 1 h.The nucleus becomes flattened possibly due to compression by the cell membrane caused by the expansion of the DPB in the early stage of adhesion.In the later stage of adhesion, the number of AFs continuously increased and nucleus became flattened more and more until 12 h.This may be caused by the increase in the top AFs that may compress the nucleus.Cells become more elongated in response to further alignment of AFs until 12 h.These results indicate that change in AFs during adhesion process is complicated not only temporally but also spatially.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080718349ZK.pdf 1914KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:7次