The Japanese Journal of Pharmacology | |
Two-Phase Increment of Ca2+ Uptake, Intracellular Ca2+ Concentration, and Histamine Release Following Antigen Stimulation in Mouse Bone Marrow-Derived Mast Cells (BMMC) | |
Takeshi Nabe2  Shigekatsu Kohno2  Yoshiyuki Tanaka2  Tatsunori Masuda2  Hideki Yamamura2  Eichi Ohkawa2  Katsuya Ohata2  Michiaki Horiba1  Shoji Kondo2  | |
[1] Department of Pneumology, Ogaki Municipal Hospital;Department of Pharmacology, Kyoto Pharmaceutical University | |
关键词: Mast cell; Histamine; Calcium; Anaphylaxis; Desensitization; | |
DOI : 10.1254/jjp.66.377 | |
学科分类:药理学 | |
来源: Nihon Yakuri Gakkai Henshuubu / Japanese Pharmacological Society | |
【 摘 要 】
References(45)Cited-By(1)The relationship between the influx of Ca2+ into cells or cytosolic Ca2+ concentration ([Ca2+]i) and the histamine release following antigen stimulation in mouse bone marrow-derived mast cells (BMMC) was examined, and the results were compared with those from human lung mast cells (HLMC) and rat peritoneal mast cells (RPMC) in some experiments. Anaphylactic histamine release from BMMC as well as HLMC, but not that from RPMC, was dependent on the extracellular Ca2+. When BMMC were challenged by antigen following radioactive 45Ca2+ addition, two phases of 45Ca2+ influx into the cells were observed. The first phase, which was initiated and completed within 30 sec and 2 min, respectively, after antigen treatment, appeared to be related to anaphylactic histamine release. The second influx began 30 sec subsequent to the first one and lasted for at least 2 min, and this occurred after the completion of the histamine release; So far, it is not known how this second influx participates in the intracellular event(s). On the other hand, only one sustained elevation of [Ca2+]i occurred that reached its maximum within 2 min after antigen stimulation. Following stimulation of BMMC with antigen in the absence of Ca2+, Ca2+ addition 1 to 5 min later time-dependently enhanced the histamine release, although the release was deteriorated by further extension of Ca2+ addition. In contrast, the releasability of HLMC was rapidly decreased. These results indicate that extracellular Ca2+ not only is prerequisite for anaphylactic histamine release from BMMC, but also may modulate the release and participate in some intracellular event(s) which has yet to be focused upon.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912080713776ZK.pdf | 724KB | download |