期刊论文详细信息
Kodai Mathematical Journal
Deforming two-dimensional graphs in R4 by forced mean curvature flow
Jing Mao1 
[1] Departamento de Matemática Instituto Superior Técnico Technical University of Lisbon
关键词: Global solution;    Backward heat kernel;    Mean curvature flow;   
DOI  :  10.2996/kmj/1352985452
学科分类:数学(综合)
来源: Tokyo Institute of Technology, Department of Mathematics
PDF
【 摘 要 】

References(11)A surface Σ0 is a graph in R4 if there is a unit constant 2-form w in R4 such that ‹e1 ∧ e2, w› ≥ v0 > 0, where {e1, e2} is an orthonormal frame on Σ0. In this paper, we investigate a 2-dimensional surface Σ evolving along a mean curvature flow with a forcing term in direction of the position vector. If v0 ≥ ${1 \over \sqrt {2}}$ holds on the initial graph Σ0 which is the immersion of the surface Σ, and the coefficient function of the forcing vector is nonnegative, then the forced mean curvature flow has a global solution, which generalizes part of the results of Chen-Li-Tian in [2].

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080708009ZK.pdf 18KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:4次