期刊论文详细信息
Kodai Mathematical Journal
L2 harmonic 1-forms on complete submanifolds in Euclidean space
Hai-Ping Fu1  Zhen-Qi Li1 
[1] Department of Mathematics Nanchang University
关键词: Submanifold;    total curvature;    L2 harmonic forms;    mean curvature;    ends;   
DOI  :  10.2996/kmj/1257948888
学科分类:数学(综合)
来源: Tokyo Institute of Technology, Department of Mathematics
PDF
【 摘 要 】

References(19)Let Mn (n ≥ 3) be an n-dimensional complete noncompact oriented submanifold in an (n+p)-dimensional Euclidean space Rn+p with finite total mean curvature, i.e, ∫M|H|n < ∞, where H is the mean curvature vector of M. Then we prove that each end of M must be non-parabolic. Denote by φ the traceless second fundamental form of M. We also prove that if ∫M|φ|n < C(n), where C (n) is an an explicit positive constant, then there are no nontrivial L2 harmonic 1-forms on M and the first de Rham's cohomology group with compact support of M is trivial. As corollaries, such a submanifold has only one end. This implies that such a minimal submanifold is plane.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080707936ZK.pdf 97KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:14次