期刊论文详细信息
Climate Research
Sensitivity of winter wheat yields in the Midwestern United States to future changes in climate, climate variability, and CO2 fertilization
M. Habeck1  O. C. Doering1  D. Gangadhar Rao1  R. A. Pfeifer1  J. C. Randolph1  J. Southworth1 
关键词: Midwestern United States;    Winter wheat;    Carbon dioxide;    HadCM2 model;    CERES-Wheat;    Climate variability;   
DOI  :  10.3354/cr022073
来源: Inter-Research Science Publishing
PDF
【 摘 要 】

ABSTRACT: This research investigates the potential impacts of climate change on winter wheat Triticum aestiuum L. production, looking at changes both in the mean climate and in climate variability, under conditions of elevated atmosphericCO2 concentrations. The study region is comprised of the 5 states of Indiana, Illinois, Ohio, Michigan, and Wisconsin in the US. This analysis was conducted for the period 2050-59 for 10 representative farm locations in the 5 states for 6future climate scenarios using the crop growth model CERES-Wheat. Wheat is currently the most widely grown crop in the world, with approximately 250 million ha planted each year. This region, while not a critical area for winter wheat production undercurrent climate, is in a marginal area that could become a more important production region under a warmer climate. As such, the impacts of climate change on wheat growth are of great significance both regionally and globally. With future atmosphericCO2 concentrations of 555 ppmv, wheat yields increased 60 to 100% above current yields across the central and northern areas of the study region when modeled for 2050-59 climate change scenarios. In the southern areas of the study region, smallincreases (0.1 to 20%) and small decreases (-0.1 to -15%) were found. These decreases in yield were more frequent under climate conditions associated with the more extreme Hadley Center greenhouse gas run (HadCM2-GHG, representing a 1% increase ingreenhouse gases per year) and for the doubled climate variability analyses. Across all sites, earlier planting dates (September 2 is optimal) performed best; yields decreased as planting was delayed. These results have implications for spring-plantedcrops. CO2 fertilization effects also are found to be significant for wheat, representing an average yield increase greater than 20% under future climate scenarios, with greater benefits occurring under more moderate future climate scenarios.Without the effects of CO2 fertilization in the model, many of the southern locations had greater decreases in yields. The overall climate change impact across the study area resulted in large increases in yields with only a few locationsexhibiting decreases, and those decreases occurring only under the more extreme climate scenarios.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080705617ZK.pdf 241KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:5次