Mathematica Slovaca | |
Gruppen secret sharing or how to share several secrets if you must? | |
László Csirmaz1  | |
关键词: multiple secret sharing; complexity; threshold scheme; secret sharing; interpolation; | |
DOI : 10.2478/s12175-013-0179-1 | |
学科分类:数学(综合) | |
来源: Slovenska Akademia Vied * Matematicky Ustav / Slovak Academy of Sciences, Mathematical Institute | |
【 摘 要 】
Each member of an n-person team has a secret, say a password. The k out of n gruppen secret sharing requires that any group of k members should be able to recover the secrets of the other n − k members, while any group of k − 1 or less members should have no information on the secret of other team member even if other secrets leak out. We prove that when all secrets are chosen independently and have size s, then each team member must have a share of size at least (n − k)s, and we present a scheme which achieves this bound when s is large enough. This result shows a significant saving over n independent applications of Shamir’s k out of n − 1 threshold schemes which assigns shares of size (n − 1)s to each team member independently of k.We also show how to set up such a scheme without any trusted dealer, and how the secrets can be recovered, possibly multiple times, without leaking information. We also discuss how our scheme fits to the much-investigated multiple secret sharing methods.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912080690988ZK.pdf | 208KB | download |