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GRUPPEN SECRET SHARING

OR

HOW TO SHARE SEVERAL SECRETS

IF YOU MUST?

László Csirmaz

(Communicated by Stanislav Jakubec )

ABSTRACT. Each member of an n-person team has a secret, say a password.
The k out of n gruppen secret sharing requires that any group of k members
should be able to recover the secrets of the other n − k members, while any

group of k− 1 or less members should have no information on the secret of other
team member even if other secrets leak out. We prove that when all secrets are
chosen independently and have size s, then each team member must have a share
of size at least (n − k)s, and we present a scheme which achieves this bound
when s is large enough. This result shows a significant saving over n independent
applications of Shamir’s k out of n− 1 threshold schemes which assigns shares of

size (n− 1)s to each team member independently of k.
We also show how to set up such a scheme without any trusted dealer, and how

the secrets can be recovered, possibly multiple times, without leaking information.
We also discuss how our scheme fits to the much-investigated multiple secret
sharing methods.
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1. Introduction

A team has n members, and each member has a secret, say a password. As
a safety caution, they want each secret to be distributed among other group
members so that it could be recovered in the case any of them would forget
it. Also, none of them trusts the others, thus they want their secrets to be
independent of the information held by any group k − 1 or less team members
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LÁSZLÓ CSIRMAZ

— even if other secrets leak out. This goal can be achieved by distributing all
secrets using Shamir’s k out of n − 1 threshold secret sharing method, see [9].
Assuming that all secrets are s bit long, the total size of the information each
team member must remember will be n · s bits: s bits for each team member
plus her own password.

The question is: can we do better if the secrets are distributed simultaneously?

This question comes under the name of multiple secret sharing, which has two

distinct flavors:

1. Different secrets are to be recovered by different access structures, usually

only one of the secrets will ever be recovered; also known as multiple secret-

sharing. A typical question is how much the information to be remembered

by each member can be squeezed compared to the independent applications

of traditional secret sharing. Results in this direction can be found in [1,2,

6,7].

2. A group recovers multiple secrets, this ismultiple-secret sharing. In this case

in order to decrease private information, unconditional security is traded for

computational security. See, e.g., [5,8,10].

In both cases, verifiable schemes can also considered, where participants can

check whether shares provided by others are genuine or not, look at [5,10].

Our problem, which we call k out of n gruppen secret sharing (see Section 2),

belongs to the first flavor (which, in fact, is more general than the second one),

as each secret is to be recovered by a different collection of team members. In

Sections 3 and 4 we concentrate on the typical secret sharing question, and

determine the amount of information each participant must receive by proving

a lower bound, and giving a matching construction.

Section 5 looks at how one of the secrets can be recovered. This is an in-

tricate issue in a multiple secret settings as — understandably — we do not

want to compromise others secrets when recovering someone’s (allegedly) for-

got password. This requirement is easy to overlook. Interestingly, the “private

recovery process” our construction from Section 3 suggests still leaks out some

information. We propose a perfect solution at the expense of increasing the

round complexity of the protocol.

Secret sharing methods, just as our construction does, usually refer to a

trusted dealer who knows all the secrets, distributes the shares privately, and

disappears after doing her job keeping all secrets. The homomorphic property of

our construction suggests another setup performed by the participants without
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any trusted third party. In Section 6 we look at it in details, and conclude that

it is, in fact, secure, and does not leak out information.

2. The “gruppen secret sharing”

Multiple secret sharing schemes are a natural generation of single secret shar-

ing schemes, and been defined formally, among others, in [1]. Informally, in such

a scheme we have a set P of participants, and n access structures A1, . . . ,An,

that is, upward closed collections of subsets of the participants. The dealer picks

(or receives) an n-tuple of secrets 〈s1, . . . , sn〉 from some finite domain with a

given distribution (typically secrets are independent and uniformly distributed),

and computes, using some randomness, the shares of the participants.

���������� 1� The multiple secret sharing scheme S is sound if qualified subsets

can recover the secret: whenever A ∈ Ai, then members of A, using their private

information only, can recover the secret si.

The scheme S is perfect, if B ⊆ P is not enabled to recover the secret si (that

is, B /∈ Ai), then members in B, even knowing all other secrets sj for j �= i,

have no more information on si than that already conveyed by the legally known

values.

In particular, if the secrets are independently chosen, then the totality of

shares of B /∈ Ai should give no information on si whatsoever even given all

other secrets.

A gruppen secret sharing scheme is a special, nevertheless interesting, case of

multiple secret sharing schemes. Each participant has a secret drawn uniformly

and independently from some finite domain S, say a password. Each password

should be recoverable by any k out of the remaining n − 1 participants, but no

coalition of k−1 or less participants should know anything about the remaining

secrets.

���������� 2� In a k out of n gruppen secret sharing scheme there are n partic-

ipants in P , participant i ∈ P has a secret si drawn uniformly and independently

from some domain, and the access structure Ai — whose members should be

able to recover si — consists of all subsets of P − {i} with at least k members,

that is the k out of n− 1 threshold structure on P − {i}.
For definiteness we assume that all secrets are s bit long (random) 0–1 se-

quences where s is large enough.
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It is easy to construct a sound and perfect k out of n gruppen secret sharing

scheme. For each participant i ∈ P , the dealer distributes the secret si to

members of Ai independently using Shamir’s k out of n − 1 threshold scheme.

As this latter scheme is also perfect, i.e., everyone gets a minimal size share

(which is s bits), everyone receives n − 1 shares of s bit each, next to his s bit

secret, which is a total n · s bits to remember. Is there any way to do it better?

The next theorem answers this question.

�	��
�� 3�

a) In a perfect and sound k out of n gruppen secret sharing scheme each

participant must receive a share of at least (n− k)s bits.

b) For s large enough there is a perfect and sound k out of n gruppen secret

sharing scheme where every participant receives exactly (n− k)s bit share.

We postpone the proof to Sections 3 and 4; here we illustrate the theorem

for the case when n = 3 and k = 2. We have three participants whom we call

Alice, Bob, and Cecil, having secrets a, b, and c, respectively. The lower bound

on the share size is almost immediate. Bob has no information on Alice’s and

Cecil’s secret. When Alice joins Bob, the two of them have enough information

to determine both Alice’s and Cecil’s secret. This means 2s bits of information

which should come from Alice. Her secret is s bit long, thus her share must also

be at least s bit long to supply that much information.

As for the construction, the dealer should tell them shares which have size

equal to that of the secrets, so that

a) any two participant should be able to recover the secret of the third;

b) no one should have any information on the others’ secrets.

To satisfy the first requirement, our first attempt is to give Alice, Bob, and

Cecil the shares c, a, and b, respectively. This way any two can recover the secret

of the third one, but these shares definitely contradict the security requirement

in Definition 1. So we “hide” these shares by xoring them with some value

possessed by others: let the three shares be c ⊕ b, a ⊕ c, b ⊕ a, respectively.

Again, any two can recover the third’s secret, for example Alice knows c ⊕ b,

Bob knows b, thus they can recover c. Unfortunately these shares also violate

the security requirement. If Bob’s secret leaks out, or Alice simply guesses it

right, then Alice alone could recover Cecil’s c. Also, if b and c are weak (and

long) passwords, then it is a simply routine to recover both b and c from c⊕ b.
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A solution could be using interpolating polynomials à la Shamir. Let r be a

random polynomial which takes the secrets at its first three places:

r(0) = a, r(1) = b, and r(2) = c.

Then let the shares be r(3), r(4), and r(5), respectively. Any pair of participants

knows r at four different places, thus if r has degree at most 3, then they can

recover the polynomial r, thus the third participant’s secret as well. The security

requirement also holds: a single participant knows r’s value at two places. If

one of the two other secrets leak out, then it is r’s value at an additional place.

Given r’s value at (at most) three places provides no information about what

values r can take at a fourth place, and this is what was required.

As usual, the polynomial r is over some finite field; the secrets are random

elements from this field. The above scheme will work when the field has at least

six distinct elements, thus we must have s ≥ 3.

3. You cannot do better than . . .

In this section we show that the amount of share every participant in a k out

of n gruppen secret sharing scheme must have is at least s · (n− k) bits, where

every secret is an (independent, uniformly random) s bit long 0–1 word. This

proves the first part of Theorem 3.

First we give an informal reasoning, then we make it precise using the entropy

method [3,4]. Let a1, . . . , ak−1, and b ∈ P be k different participants. We want

to estimate the amount of private information b must have. By assumption, the

totality of the private information the group {a1, . . . , ak−1, b} has determines

uniquely the secrets of the remaining n − k participants, which amounts to

(n − k) · s bits. By the security requirement, whatever {a1, . . . , ak−1} know

should be independent of those secrets plus the secret of b. Thus the additional

(n− k) · s+ s bits of information must be supplied by b. He has s bits of secret,

thus must have a share of size at least (n− k) · s bits.

The above reasoning can be made precise using the so-called entropy method

as described in, e.g., [3] or [4]. First of all, we consider the secrets and shares as

random variables. The size of the value of a random variable ξ is its Shannon

entropy H(ξ), which is (roughly) the number of necessary (independent) bits

to define the value of ξ uniquely. Our assumption was that the secrets are

independent s bit long 0–1 sequences, thus H(ξη) = 2s, where ξ and η are the

secret values of two participants.
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For any collection {ξi : i ∈ I} of random variables define the real-valued

function

f(I) = H
({ξi : i ∈ I})

where the entropy is taken for the joint distribution of all indicated variables. For

example, if a and b are (indices of) two participant’s secrets, then f
({a}) = s,

and f
({a, b}) = 2s as we have seen above. Similarly, if j is (an index of) a share,

then f
({j}) is the size of that share.

The function f is defined on all subsets of some finite set, and satisfies certain

linear inequalities which follow from the so-called Shannon inequalities for the

entropy function H. The following claim collects those properties which will be

used to prove the theorem. As usual, we write f(XY ) instead of f(X ∪ Y ), and

f(x) and f(xX) instead of f({x}) and f({x} ∪X).

�
��� 4� (See [4]) For any subsets X and Y

1. f(X) ≥ 0 (positivity),

2. f(X) ≤ f(Y ) if X ⊆ Y (monotonicity),

3. f(X) + f(Y ) ≥ f(XY ) (additivity),

4. f(XY ) = f(X) if (the variables in) X determines the values of (the vari-

ables in) Y ;

5. f(XY ) = f(X) + f(Y ) if X and Y are statistically independent.

The entropy method can be rephrased in a few words as follows. Let j be the

(index) of any share. Suppose for any function f satisfying properties enlisted

in Claim 4 there are (indices) a1, . . . , a� of secrets such that

f(j) ≥ f(a1) + · · ·+ f(a�).

The the size of share j must be at least � times the size of the secrets.

����� 5� Suppose G is a group of participant with k − 1 members, and a,

b̄ = 〈b1, . . . , bn−k〉 are the (indices of the) secrets of participants not in G and

(the indices of) their shares are j and j̄ = 〈j1, . . . , jn−k〉, respectively. Then
f(a) + f(j) ≥ f(ab̄).

P r o o f. Let us denote the total data (secret plus share) held by G by G as

well. By assumption, G together with a and j determines all the secrets bi,

that is f(ajG) = f(ab̄jG). Also, G should have no information on the secrets a
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and bi or on their combinations, thus f(ab̄G) = f(ab̄) + f(G). Using these, the

additivity and monotonicity property of f , we have

f(a) + f(j) + f(G) ≥ f(ajG) = f(ab̄jG) ≥ f(ab̄G) = f(ab̄) + f(G).

Comparing the first and last tag gives the claim of the Lemma. �

From this lemma we can easily deduct the required lower bound on the size

of the share each participant receives.

P r o o f o f f i r s t p a r t o f T h e o r e m 3. Use notations from Lemma 5, in

particular let a and j respectively be (indices of) the secret and the share of

participant a. All secrets have the same size, thus

f(a) = f(b1) = · · · = f(bn−k).

By assumption the secrets are totally independent, which means

f(ab̄) = f(ab1 . . . bn−k) = f(a) + f(b1) + · · ·+ f(bn−k) = (n− k + 1)f(a).

From Lemma 5 we know that f(j) ≥ f(ab̄)− f(a) = (n− k)f(a), which proves

part a) of Theorem 3. �

4. An (optimal) protocol

Our k out of n gruppen secret sharing scheme, whose complexity matches the

bound given in Section 3, is a straightforward generalization of the one sketched

in Section 2. Let F be a finite field with more than n(n − k + 1) elements.

Secrets will be chosen uniformly and independently from F, which means that

if secrets are s bit long 0–1 sequences, then F can be chosen to be the field

of characteristic 2 on 2s elements. To give a scheme means to describe how

the dealer computes (determines) the shares given the randomly and uniformly

chosen secrets; or, equivalently, how the dealer can distribute the shares and

the secrets simultaneously as long as the secrets come from the appropriate

distribution. We will choose this latter approach, and hint how to modify the

scheme when the secrets are given in advance.

Let pi for 1 ≤ i ≤ n denote the participants. The dealer chooses different field

elements xi,j for 1 ≤ i ≤ n and 0 ≤ j ≤ n − k, and picks a random polynomial

r(x) over F of degree less than k(n− k + 1).

The secret of participant pi will the the value of r at xi,0. (When given the

secrets in advance, the same distribution can be achieved by simply choosing r

1397

Unauthenticated
Download Date | 2/3/17 9:30 PM
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randomly from among those polynomials which give the secret of pi at r(xi,0).)

As for the share, the dealer gives participant pi all field elements r(xi,1) up to

r(xi,n−k). Observe that secrets are uniform random elements from the field, thus

the “size” (entropy) of every secret is the same, namely log2(|F|). Similarly, all

participants receive (n−k) field elements as share, therefore the size of the share

is exactly (n− k) times that of the secret.

We claim that any k participants can determine the secret value of the re-

maining n − k participants. This is clear, as the k participants know the value

of r at k(n − k + 1) different places, while r has smaller degree, thus they can

determine r, and its value at xp,0 for any participant p.

Next, we claim that the total information of k− 1 participants is statistically

independent of the secrets of the other n−k+1 participants. This is true as r is a

random polynomial of degree below k(n−k+1), and k−1 participants know the

value of this polynomial at (k−1)(n−k+1) places, thus the polynomial can take

all the possibilities with equal probability at any n−k+1 predetermined places

— in particular at xp,0 where p runs over the missing n − k + 1 participants.

Consequently, all private information of k − 1 participants, plus the secret of

all but one remaining participants is statistically independent of the secret of

the last participant. This is exactly the security requirement which proves the

second part of Theorem 3.

5. Secret recovery

The method outlined in the previous Section to recover the secret of p ∈ P

was that k participants, using their private values, recover the polynomial r,

and then compute r’s value at xp,0. This recovery process has the drawback

that once r is known, all secrets are revealed, not only the secret of p. How

can we achieve that they recover the value of r at xp,0 only and not the whole

polynomial r? Let B ⊆ {1, . . . , n} be the subset of size k which wants to recover

the secret of p /∈ B. As the values xi,j are publicly known, everyone can compute

the constants λi,j ∈ F using, e.g., the Lagrange interpolation formula such that

r(xp,0) =
∑
i∈B

n−k∑
j=0

λi,jr(xi,j)

independently what the values r(xi,j) are. Consequently to recover p’s secret,

participant i ∈ B should only compute the sum

ti,p =

n−k∑
j=0

λi,jr(xi,j) (1)
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and send it privately to p, rather than revealing all the r(xi,j) values. p receives

the k values (1) from participants in B, he simply adds them up to recover his

secret.

Unfortunately this process leaks out information, and cannot be repeated

indefinitely. To see why this is the case, we go back to the 2 out of 3 gruppen

secret sharing scheme as discussed in Section 2. Alice, Bob, and Cecil have

secrets r(0), r(1), and r(2), and have shares r(3), r(4), and r(5), respectively.

Now Alice announces that she lost her secret. Lagrange says that

r(0) =
10

3
r(1) +

5

3
r(4)− 10

3
f(2)− 2

3
r(5),

thus Bob sends Alice the value

tb =
10

3
r(1) +

5

3
r(4),

and Cecil sends

tc = −10

3
f(2)− 2

3
r(5).

The Alice could recover her secret as tb + tc. However, Alice could be cheating,

as she still have her share r(3). Again by Lagrange

r(3) = −1

6
r(1) +

2

3
r(4) +

2

3
r(2)− 1

6
r(5).

Alice can eliminate r(4) and r(5) using the values she received from Bob and

Cecil, thus she knows

2

3

(
r(3)− 2

5
tb − 1

4
tc

)
= −r(1) + r(2)

a nontrivial combination of Bob’s and Cecil’s secrets. Thus if any of those two

secrets leak out, or Alice could successfully guess it, she’ll know the other secret

immediately.

Switching to linear algebra from polynomial interpolation, a random polyno-

mial of degree less than k(n−k+1) can be considered as a random vector if the

k(n − k + 1)-dimensional space. Knowing the value at a certain place amounts

to know a (fixed) linear combination of the coefficients of the random vector.

Initially every participant knows (n− k+1) such linear combinations. Thus the

codimension of k − 1 participants private information is n− k + 1, it is just the

linear space where the remaining n− k + 1 participants have their secrets.

During the recovery procedure p receives k further linear combinations (1).

As these add up to his secret, the number of new linear combinations he knows

is (k − 1) more. Thus if this process p is joined by k − 2 other participants, the
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codimension of their information is n−2(k−1), thus must leak some information

about the other’s secrets.

A possible remedy is to keep track the codimension of the total information of

any k′ ≤ k participants, and let run the recovery process until it is large enough.

Also, if p announces that he lost his secret, then p should be excluded in any

further recovery stage.

Another remedy is to use freshly generated random values which hide the

exact values of the sums (1) from p. This solution has the drawback that it

increases the communication overhead, requires some further (trivial) commu-

nication. However it has further advantages:

• anyone’s secret can be recovered arbitrary number of times without affecting

the security level;

• not only the secret, but also the shares can be recovered without significant

increase in the communication, thus recovering the “full state” after a break

down.

As before, let B be the k-element set of participants who want to recover p’s

secret. Each i ∈ B generates k random and independent elements from F, say

ri,j , j ∈ B. Then i sends ri,j to j. After this step i will know all ri,j (as he

generated those numbers), and rj,i (as he received them from the others). After

this i sends p the obfuscated element

t′i,p = ti,p +
∑
j∈B

(ri,j − rj,i). (2)

After receiving all sums in (2), p simply adds them up and recovers his secret.

Rather than interpolating the polynomial r at the place xp,0 only, participants

in B can interpolate r at every xp,j and compute the sums similar to (1). In

the obfuscating step everyone generates k(n − k + 1) random elements (k for

each j) independently, and then sends the (n − k + 1) obfuscated interpolation

sums to p, who can recover his secret plus all the shares. This way no private

information is leaked out, and the whole process can be repeated indefinitely.

6. How to distribute the shares

Any secret sharing scheme relies on a trusted dealer to set up the scheme,

who collects the secrets from the participants, generates the shares, and tells the

every participant her share privately, and then disappears without leaking out
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any information. Such a trusted entity is quite hard to find, protocols not relying

on trusted party are preferable to ones which use one. Fortunately, the scheme

described in Section 4 has the homomorphic property : if a scheme distributes

secrets si and with shares hi for i ∈ P , another scheme distributes secrets s′i
and has shares h′

i, then for the secrets si+ s′i the shares hi+h′
i are correct ones,

and have the appropriate distribution. Here the addition is the addition in the

field F.

Using this homomorphic property, a gruppen secret sharing scheme can be

set up by the participants as follows. Suppose participant i ∈ B has the secret

si. He computes, as a dealer, the shares of the k out of n gruppen secret sharing

scheme as described in Section 4, where all secrets are zero, except his own,

which is si. He generates the shares hi,j for j ∈ P , and then sends hi,j to

participant j.

Each participant receives shares from everyone else (including himself), and

his share in the final scheme is just the sum of all shares received. As a con-

sequence of the homomorphic property, in this way the participants achieved a

correct scheme which distributes their secrets. In an ideal scheme the participant

p ∈ P receives only his share from the dealer; now every participant receives an

(n−k)-dimensional vector of F from the others such that his share is the sum of

the vectors received. Thus it might happen that a coalition of k− 1 participants

could extract extra information from the values they received. We claim that

this is not the case, this set-up is, in fact, k − 1-secure.

Let us fix a coalition B of k − 1 participants, and look at what they receive

from p /∈ B. p generates a random polynomial of degree < k(n − k + 1) which

takes zero at xi,0, i �= p, and p’s secret at xp,0. To make the polynomial random,

its value should be given randomly and independently at further k(n−k+1)−n =

(k−1)(n−k) places. Now participants in the coalition B receive the polynomial’s

value at exactly (k − 1)(n − k) places, thus the random polynomial can be set

up by choosing its value at these places randomly and independently. This

also means that members of B can extract no information from the values they

receive from p.
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