期刊论文详细信息
Mathematica Slovaca | |
The sharp threshold for percolation on expander graphs | |
Yilun Shang1  | |
关键词: percolation; expander graph; sharp threshold; random graph; | |
DOI : 10.2478/s12175-013-0161-y | |
学科分类:数学(综合) | |
来源: Slovenska Akademia Vied * Matematicky Ustav / Slovak Academy of Sciences, Mathematical Institute | |
【 摘 要 】
We consider a random subgraph G n(p) of a finite graph family G n = (V n, E n) formed by retaining each edge of G n independently with probability p. We show that if G n is an expander graph with vertices of bounded degree, then for any c n ∈ (0, 1) satisfying $$c_n gg {1 mathord{left/ {vphantom {1 {sqrt {ln n} }}} ight. kern-ulldelimiterspace} {sqrt {ln n} }}$$ and $$mathop {lim sup }limits_{n o infty } c_n < 1$$, the property that the random subgraph contains a giant component of order c n|V n| has a sharp threshold.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912080690970ZK.pdf | 292KB | download |