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ABSTRACT. We consider a random subgraph Gn(p) of a finite graph family
Gn = (Vn, En) formed by retaining each edge of Gn independently with prob-
ability p. We show that if Gn is an expander graph with vertices of bounded

degree, then for any cn ∈ (0, 1) satisfying cn � 1/
√

lnn and lim sup
n→∞

cn < 1, the

property that the random subgraph contains a giant component of order cn|Vn|
has a sharp threshold.

c©2013
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1. Introduction and results

Let Gn = (Vn, En) be a finite graph with |Vn| = n vertices and Gn(p) be the
spanning subgraph of Gn obtained by retaining each edge of Gn independently
with probability p. When Gn is a complete graph, this model is known as the
Erdős-Rényi random graphG(n, p) [5,10,17], which has been extensively treated.
Other examples of percolation on finite graphs are concerned with graphs of some
symmetries such as regular graphs [8, 14, 15] and d-dimensional torus or box,
which is closely related to percolation on corresponding infinite lattice graph Z

d

[3,12,19]. Recently, percolation on general classes of finite graphs has also been
investigated, see e.g. [1, 2, 4, 6, 18], where isoperimetric inequalities replacing
symmetry assumptions play a key role. In this paper, following the path of Alon
et al. [1] and Benjamini et al. [2], we study the sharp threshold phenomenon
for percolation on finite graphs satisfying an isoperimetric inequality (called
expander graphs).

For any two sets of vertices A and B in Gn, the set En(A,B) consists of
all edges with one endpoint in A and the other in B. The edge-isoperimetric
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number, c(Gn), (also called the Cheeger constant) is given by

min
A⊂Vn

0<|A|≤n/2

∂En
A

|A| ,

where ∂En
A = En(A, Vn\A) is the exterior edge-boundary of A. Let b and d be

positive constants. A (b, d)-expander graph is a graph Gn = (Vn, En) such that
the maximal degree in Gn is not greater than d, and c(Gn) > b. In this paper, all
asymptotics are as n → ∞. We say that an event holds asymptotically almost
surely (a.a.s.) if the probability that it holds tends to 1, following the notations
in [10].

In [1], Alon, Benjamini and Stacey derived the precise critical probability for
the emergence of a linear size giant component in expander graphs under the
assumptions of regularity and high-girth:

������� 1.1� ([1: Theorem 3.2]) Let d ≥ 2 and let Gn be a sequence of d-regu-
lar (b, d)-expander graphs with girth gn → ∞.

If p > 1/(d − 1), then there exists a c > 0 such that, asymptotically almost
surely,

Gn(p) contains a component of order at least c|Vn|.
If p < 1/(d− 1), then for any c > 0, asymptotically almost surely,

Gn(p) does not contain a component of order at least c|Vn|.
Recently, Benjamini, Boucheron, Lugosi and Rossignol [2] are able to show

that in any expander graph, every giant component of given proportion emerges
in an interval of length o(1) (more precisely, of order O

(
(lnn)−1/3

)
), removing

the regularity and high-girth assumptions in Theorem 1.1. Their main result
may be formalized as follows.

������� 1.2� ([2: Theorem 1.3]) Let Gn be a (b, d)-expander graph and let
c ∈ (0, 1). There exist constants q1 = q1(d) > 0 and q2 = q2(c) ∈ (q1, 1), and
p∗n(c) ∈ [q1, q2] such that, for every ε > 0, if pn ≥ p∗n(c)+ ε, then, asymptotically
almost surely,

Gn(pn) contains a component of order at least cn,

and if pn ≤ p∗n(c)− ε, then, asymptotically almost surely,

Gn(pn) does not contain a component of order at least cn.

Note that in Theorem 1.2, the sharp threshold p∗n(c) is dependent on the pro-
portion, c, of the giant component in Gn. Thus, we can not assert the existence
of a universal threshold function p∗n for the emergence of a giant component.

In this paper, we move a further step beyond Theorem 1.2 by allowing more
general proportions of giant components. A sharp threshold result for the events
“Gn(pn) contains a component of order at least cnn” for cn ∈ (0, 1) is the
following
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������� 1.3� Let Gn be a (b, d)-expander graph. Let cn ∈ (0, 1) and cn �
1/

√
lnn. Suppose that c := lim sup

n→∞
cn < 1. There exist constants q1 = q1(d) > 0

and q2 = q2(c) ∈ (q1, 1), and p∗n(cn) ∈ [q1, q2] such that, for every ε > 0, if
pn ≥ p∗n(cn) + ε, then, asymptotically almost surely,

Gn(pn) contains a component of order at least cnn,

and if pn ≤ p∗n(cn)− ε, then, asymptotically almost surely,

Gn(pn) does not contain a component of order at least cnn.

We present a complete and self-contained proof of Theorems 1.3 in two stages:
the critical probabilities (i.e., the thresholds) p∗n(cn) are shown to be bounded
away from zero and one in Section 2, and the threshold width is shown to be
bounded by a function of n that tends to zero in Section 3. It is often that several
key lemmas in Section 2 and Section 3 are to be found as pieces of a long proof
of a big statement in [1–3] and so the validity of these technical lemmas under
weaker assumptions needs to be carefully checked. We include the proofs of
them, more or less as they were presented in [1–3], not only for the convenience
of the reader but also to convince the reader that they do hold in our setting.

2. The threshold of giant component
is bounded away from zero and one

Before proceeding, we introduce some notations that will be used throughout
the paper. Let Gn = (Vn, En) be a (b, d)-expander graph as before. Each point
configuration x ∈ {0, 1}En is identified with the subgraph of Gn with vertex set
Vn and edge set obtained by removing from En all edges e such that x(e) = 0.
For p ∈ [0, 1], we equip the space {0, 1}En with the product probability measure
µn,p under which each x(e) is independently 1 with probability p and 0 with
probability 1−p. We denote by En,p(f) =

∫
f(x) dµn,p(x) andDn,p(f) the mean

and variance of random variable f : {0, 1}En → R, respectively. For x ∈ {0, 1}En ,

let C(1)
n = C(1)

n (x) be the largest connected component in the configuration x,

and let L
(1)
n = L

(1)
n (x) = |C(1)

n (x)|. Denote by C(v) the connected component
containing a vertex v ∈ Vn.

Note that, for fixed n and any cn ∈ (0, 1), µn,p

{
L
(1)
n ≥ cnn

}
is a strictly

increasing polynomial of p. Therefore, for any α ∈ [0, 1], we define pn,α(cn) as
the unique real number p ∈ [0, 1] such that

µn,p

{
L(1)
n ≥ cnn

}
= α.

The threshold function in Theorem 1.3 is defined as p∗n(cn) = pn,1/2(cn). We
sometimes suppress the subscript n if no ambiguity will be caused.
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�����	
�
�� 2.1� Let cn ∈ (0, 1) and cn � lnn/n. Suppose that

c := lim sup
n→∞

cn < 1.

There exist two constants q1 = q1(d) > 0 and q2 = q2(c) ∈ (q1, 1), and q3(cn)
satisfying q3(cn) ∈ (q1, q2(c)), such that for any α ∈ (0, 1), for all n large enough,
pn,α(cn) ∈ (q1, q3(cn)).

Moreover, there are positive constants C1 and C2, depending only on b and
d, such that for any pn ≥ q3(cn),

µn,pn

{
L(1)
n ≥ cnn

} ≥ 1− C1e
−C2n. (2.1)

Since q3(cn) depends on n, the introduction of a constant upper bound
q2(c) < 1 plays an essential role. This is different from the situation in [2],
where cn ≡ c is fixed. To prove Proposition 2.1 we need the following two lem-
mas, the proofs of which are essentially from [1: Lemma 2.2, Proposition 3.1]
and [3: Theorem 2].


���� 2.1� ([2: Proposition 3.1]) There exist constants 0 < p0(b) < 1, a(b) > 0
and C(b, d) > 0, such that for any p ≥ p0 and large enough n,

µn,p

{
L(1)
n ≥ an

} ≥ 1− e−Cn.


���� 2.2� For any a1 ∈ (0, 1/2) and a2,n ∈ (1/2, 1) satisfying

lim sup
n→∞

a2,n < 1,

there is 0 < q4(a1, a2,n) < 1 such that lim sup
n→∞

q4(a1, a2,n) < 1 and, for any

pn ≥ q4(a1, a2,n),

µn,pn

{
Gn(pn) contains a component of order in [a1n, a2,nn)

} ≤ 4
(
1+

1

a1

)
e−n.

P r o o f. From [7: pp. 68] we know that an infinite d-regular rooted tree contains
1

(d−1)r+1

(
dr
r

) ≤ (de)r rooted subtrees of order r. Given a vertex v ∈ Gn, one may

associate a subtree of the infinite d-regular tree rooted at v by considering the
self-avoiding paths issued from v in Gn. Therefore, any connected subgraph of
order r in Gn containing v can correspond to a different subtree of order r. Thus,
the total number of connected subsets of order r in Vn is less than n(de)r/r.

Thanks to the expansion property, for any subset U ⊂ Vn of order r, the
probability that all edges in ∂En

U are absent is at most (1 − pn)
br if r ≤ n/2;

and at most (1− pn)
b(n−r) if r > n/2. Hence, for any n ∈ N, the probability of

having a connected component of order in [a1n, a2,nn) is at most
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�n/2�∑
r=�a1n�

n(de)r

r
(1− pn)

br +

�a2,nn�∑
r=�n/2�+1

n(de)r

r
(1− pn)

b(n−r)

≤ 1

a1
· (de(1− pn)

b)a1n

1− (de(1− pn)b)
+ 2(1− pn)

nb (de(1− pn)
−b)a2,nn+1

de(1− pn)−b − 1

≤ 4

a1
e−n + 4e−n,

provided that

de(1−pn)
−b ≥ 2, (de)a2,n(1−pn)

b(1−a2,n) ≤ e−1, (de(1−pn)
b)a1 ≤ e−1.

(2.2)

Since lim sup
n→∞

a2,n < 1, the conditions (2.2) are satisfied if pn is larger than

some q4(a1, a2,n), which is bounded away from 1. �

Now we will show Proposition 2.1 by virtue of Lemma 2.1 and Lemma 2.2.

P r o o f o f P r o p o s i t i o n 2.1. First, we show the lower bound of pn,α(cn).
Fix 0 < q1 < 1/(d − 1) and p ≤ q1. Consider the subcritical Galton-Watson
process with the first offspring distribution Bin(d, p) and other offspring dis-
tributions Bin(d − 1, p). Since the maximum degree of Gn is at most d, the
connected component C(v) containing a vertex v ∈ Vn has order no more than
S, where S is the total number of descendants of the above branching process
with root v. It is well-known (e.g. [13: pp. 172]) that there are some λ > 0,
M < ∞, depending only on d and q1, such that, for any n and p ≤ q1,

En,p(e
λS) ≤ M.

Hence, by Markovian inequality, we have for any t > 0 and p ≤ q1,

µn,p

{
L(1)
n ≥ t

} ≤ nµn,p{S ≥ t} ≤ nEn,p(e
λS)

eλt
≤ nMe−λt.

Since cn � lnn/n, we obtain

µn,p

{
L(1)
n ≥ cnn

} ≤ µn,p

{
L(1)
n ≥ 2

λ
ln(nM 1/2)

}
≤ 1

n
.

Taking into account the fact that µn,p{L(1)
n > cnn} is increasing with respect

to p, we have pn,α(cn) > q1 for any α ∈ (0, 1) and large enough n.

Next, the upper bound of pn,α(cn) can be shown by choosing (recall Lemma 2.1
and Lemma 2.2)

q3(cn) = max

{
q4

(
min

{
1

4
, a

}
,max

{
3

4
, cn

})
, p0(b)

}
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and

q2(c) = max

{
q5

(
min

{
1

4
, a

}
,max

{
3

4
, c

})
, p0(b)

}
.

In fact, we can show this by the reduction to absurdity. Suppose that pn,α(cn) ≥
q3(cn), i.e., pn,α(cn) ≥ q4

(
min{1/4, a},max{3/4, cn}

)
and pn,α(cn) ≥ p0(b). Fix

n ∈ N. If cn < 3/4,

(0, 1) 
 α = µn,p

{
L(1)
n ≥ cnn

} ≥ µn,p

{
L(1)
n ≥ 3

4
n
}
, (2.3)

and if cn ≥ 3/4,

(0, 1) 
 α = µn,p

{
L(1)
n ≥ cnn

}
. (2.4)

Involving Lemma 2.1 and Lemma 2.2, the right-hand sides of (2.3) and (2.4) tend
to 1 as n → ∞, which is a contradiction. Hence, we have pn,α(cn) < q3(cn).

Finally, we show the statement (2.1). This can be proved by comparing cn
with a in Lemma 2.1. Fix n ∈ N and suppose pn ≥ q3(cn).

Case (i): cn ≤ a.
By Lemma 2.1, we have

µn,pn
{L(1)

n ≥ cnn} ≥ µn,pn
{L(1)

n ≥ an} ≥ 1− e−Cn.

Case (ii): cn > a ≥ 1/2.
Choosing a1 = 1/4 and a2,n = cn, we have by Lemma 2.1 and Lemma 2.2,

µn,pn
{L(1)

n ≥ cnn} = µn,pn
{L(1)

n ≥ an} − µn,pn
{an ≤ L(1)

n < cnn}
≥ 1− e−Cn − 4

(
1 +

1

a1

)
e−n

= 1− e−Cn − 20e−n.

Case (iii): cn > 1/2 > a.
Choosing a1 = a and a2,n = cn, we have by Lemma 2.1 and Lemma 2.2,

µn,pn
{L(1)

n ≥ cnn} = µn,pn
{L(1)

n ≥ an} − µn,pn
{an ≤ L(1)

n < cnn}
≥ 1− e−Cn − 4

(
1 +

1

a

)
e−n.

Case (iv): 1/2 ≥ cn > a.
Choosing a1 = a and a2,n = 3/4, we have by Lemma 2.1 and Lemma 2.2,

µn,pn
{L(1)

n ≥ cnn} = µn,pn
{L(1)

n ≥ an} − µn,pn
{an ≤ L(1)

n < cnn}
≥ 1− e−Cn − 4

(
1 +

1

a

)
e−n.

The proof of Proposition 2.1 is thus complete. �
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3. The bound for threshold width

In this section, we prove our main result, Theorem 1.3. The main step is a
threshold width result stated below in Proposition 3.1.

�����	
�
�� 3.1� Let α < 1/2 and cn ∈ (0, 1). Suppose that cn � lnn/n and
c := lim sup

n→∞
cn < 1. There is a positive constant C3, depending only on α, b and

d, such that for any n ∈ N,

pn,(1−α)(cn)− pn,α(cn)

≤ C3

(lnn)1/3 ·min

{
c
2/3
n , (1− cn)2/3,

((
1− q3(cn)

)d −√
d ln(2/α)

2n

)2/3} . (3.1)

where q3(cn) is defined in Proposition 2.1.

Recall that p∗n(cn) = pn,1/2(cn). Proposition 3.1, together with Proposi-
tion 2.1 implies our main result, Theorem 1.3. To see this, we note that if c′ :=
lim inf
n→∞

cn > 0, then the right-hand side of (3.1) is equal to C4/(lnn)
1/3, where

C4 is some positive constant depending only on α, b, d, c and c′; if c′ = 0, then the
right-hand side of (3.1) also becomes o(1) using the assumption cn � 1/

√
lnn.

We mention that the threshold widths for c′ > 0 and cn ≡ c′ (as is the case
treated in [2]) have the same order O

(
(lnn)−1/3

)
.

Now, we turn to the proof of Proposition 3.1, which relies on a series of
lemmas. For y ∈ R, denote by y− = max{0,−y} the negative part of y. When
x, x′ ∈ {0, 1}En are chosen independently according to µn,p, and e ∈ En, we

denote by x(e) the random configuration obtained from x by replacing x(e) by

x′(e). The relationship of the variance and mean of L
(1)
n is collected in the

following lemma, where (3.2) is a generalization of Russo’s lemma [16].


���� 3.1� ([2: Lemma 4.4]) There is a constant C(b, d) < ∞ such that, for
any p and n,

Dn,p

(
L(1)
n

) ≤ C(b, d)
n

ln n

dEn,p(L
(1)
n )

dp

and

dEn,p

(
L
(1)
n

)
dp

=
1

p(1− p)

∑
e∈En

En,p

[(
L(1)
n (x)− L(1)

n

(
x(e)

))
−

]
. (3.2)
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���� 3.2� Let γn ∈ (0, 1) and ε ∈ (0, 1). For any c̃n satisfying

1− (1− γn)
d +

√
d ln(1/ε)

2n
≤ c̃n < 1

and, for n large enough,

µn,γn

{
L(1)
n ≥ c̃nn

} ≤ ε.

P r o o f. Let N be the number of isolated vertices in Gn. Denote by Xv the
indicator function of the event that v ∈ Vn is isolated. Note that Xv and Xv′

are independent as soon as d(v, v′) ≥ 2, where d(v, v′) is the distance of vertices
v and v′ according to the shortest path metric in Gn. Thus, the maximal degree
in a dependency graph of (Xv)v∈Vn

is less than d. Recall that a dependency
graph of the random variables (Xv)v∈Vn

is given by the vertex set Vn and the
edge set satisfying that if for two disjoint sets of vertices A and B there is no
edge between A and B then the families (Xv)v∈A and (Xv)v∈B are independent.
Therefore, by [9: Theorem 2.1], for any t > 0 and pn ∈ [0, 1],

µn,pn

{
N < En,pn

(N)− t
} ≤ e−

2t2

nd .

Notice that L
(1)
n ≤ n − N and N =

∑
v∈Vn

Xv. Hence, we have En,γn
(N) ≥

(1− γn)
dn, and for any c̃n > 1− (1− γn)

d,

µn,γn

{
L(1)
n ≥ c̃nn

} ≤ µn,γn

{
N < (1− c̃n)n

}
≤ µn,γn

{
N ≤ En,γn

(N)− (1− γn)
dn+ (1− c̃n)n

}
≤ e−

2n
d ((1−γn)

d−(1−c̃n))2 .

Using the assumption 1 − (1 − γn)
d +

√
d ln(1/ε)/2n ≤ c̃n < 1, we yield the

desired result. �

The next lemma concerns the growth rate of the mean.


���� 3.3� Let α ∈ (0, 1) and cn ∈ (0, 1) satisfying cn � lnn/n and c =
lim sup
n→∞

cn < 1. Then, for every p ∈ [pn,α(cn), pn,(1−α)(cn)], and for n large

enough,

dEn,p(L
(1)
n )

dp
≥ αb

2
n ·min

{
cn, 1− cn, (1− q3(cn))

d −
√

d ln(2/α)

2n

}
,

where q3(cn) is defined in Proposition 2.1.

P r o o f. Given n ∈ N, fix 0 < cn ≤ c̃n < 1. From (3.2) and the expansion
property, we obtain

dEn,p(L
(1)
n )

dp
=

1

p(1− p)

∑
e∈En

En,p

[(
L(1)
n (x)− L(1)

n (x(e))
)
−

]
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≥ 1

1− p
En,p

(
|∂En

C(1)
n |

)

≥ b

1− p
En,p

(
L(1)
n 1{L(1)

n ≤n/2} + (n− L(1)
n )1{L(1)

n >n/2}
)

≥ bnmin{cn, 1− c̃n} · µn,p

{
L(1)
n ∈ [cnn, c̃nn)

}
, (3.3)

where the last inequality (3.3) can be easily proved by dividing into three cases:

(i) cn ≤ c̃n < 1/2,

(ii) cn ≤ 1/2 ≤ c̃n and

(iii) 1/2 < cn ≤ c̃n.

Now, by Proposition 2.1, there exists a q3(cn) < 1 such that for n large
enough, pn,(1−α)(cn) ≤ q3(cn). Thus, applying Lemma 3.2 with γn = q3(cn) and

ε = α/2, there is some c̃n(cn) = max

{
cn, 1− (1− q3(cn))

d +
√

d ln(1/ε)
2n

}
such

that, for n large enough, pn,(1−α)(cn) ≤ q3(cn) ≤ pn,α/2(c̃n).

Hence, for any p ∈ [
pn,α(cn), pn,(1−α)(cn)

]
, we obtain µn,p

{
L
(1)
n ≥ cnn

} ≥ α

and µn,p

{
L
(1)
n ≥ c̃nn

} ≤ α/2. Combining the above comments with (3.3), we
finally have

dEn,p(L
(1)
n )

dp
≥ bnmin

{
cn, 1− c̃n(cn)

} · α
2

=
αb

2
n ·min

{
cn, 1− cn, (1− q3(cn))

d −
√

d ln(2/α)

2n

}
,

for large enough n. �

P r o o f o f P r o p o s i t i o n 3.1. Let 0 < α < 1/2 and cn ∈ (0, 1) satisfying
cn � lnn/n. We will show that there is some constant C5 = C5(α, b, d), such
that if

εn =
C5

(lnn)1/3 ·min

{
c
2/3
n , (1− cn)2/3,

(
(1− q3(cn))d −

√
d ln(2/α)

2n

)2/3} ,

then pn,1/2(cn) − pn,α(cn) ≤ εn. The proof that pn,(1−α)(cn)− pn,1/2(cn) ≤ εn
is similar.

Applying the trivial bound L
(1)
n ≤ n and Lemma 3.1, we know that no matter

how εn is chosen,
pn,1/2(cn)− 3εn

4∫
pn,1/2(cn)−εn

Dn,p(L
(1)
n ) dp ≤ Cn2

lnn
,
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where C = C(b, d) is defined in Lemma 3.1. Hence, by virtue of the mean value
theorem for integration there is some q1,n ∈ [pn,1/2(cn)− εn, pn,1/2(cn)− 3εn/4]
such that

Dn,q1,n(L
(1)
n ) ≤ 4Cn2

εn lnn
. (3.4)

Likewise, there is some q2,n ∈ [pn,1/2(cn)− εn/2, pn,1/2(cn)− εn/4] such that

Dn,q2,n(L
(1)
n ) ≤ 4Cn2

εn lnn
. (3.5)

Now, it suffices to prove that q1,n ≤ pn,α(cn). To this end, we will use
the method of reduction to absurdity. Suppose that pn,α(cn) < q1,n. Since
q1,n + εn/4 ≤ q2,n ≤ pn,1/2(cn), by Lemma 3.3 and Lagrange’s mean value
theorem, for n large enough, we have

En,q2,n(L
(1)
n )−En,q1,n(L

(1)
n )

≥ εnαbn

8
·min

{
cn, 1− cn, (1− q3(cn))

d −
√

d ln(2/α)

2n

}
.

On the other hand, let Mpn
be the median of L

(1)
n under µn,pn

(we assume the
form of k + 1/2 with k ∈ N, which ensures its uniqueness). By the definition of
median and the fact that Mp is increasing with p,

cnn ≥ Mpn,1/2(cn) −
1

2
≥ Mq2,n − 1

2
.

Using Levy’s inequality [11] and (3.5), it follows that

|En,q2,n(L
(1)
n )−Mq2,n | ≤

√
Dn,q2,n(L

(1)
n ) ≤ n

√
4C

εn lnn
.

Wrapping up the above arguments, we derive

µn,q1,n{L(1)
n ≥ cnn}

= µn,q1,n{L(1)
n −En,q1,n(L

(1)
n ) ≥ cnn−En,q1,n(L

(1)
n )}

≤ µn,q1,n

{
L(1)
n −En,q1,n(L

(1)
n ) ≥ Mq2,n − 1

2
−En,q1,n(L

(1)
n )

}

= µn,q1,n

{
L(1)
n −En,q1,n(L

(1)
n ) ≥ Mq2,n −En,q2,n(L

(1)
n )

+ En,q2,n(L
(1)
n )− 1

2
−En,q1,n(L

(1)
n )

}
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≤ µn,q1,n

{
L(1)
n −En,q1,n(L

(1)
n ) ≥ εnαbn

8

·min

{
cn, 1− cn, (1− q3(cn))

d −
√

d ln(2/α)

2n

}
− 1

2
− n

√
4C

εn lnn

}

Now, choosing C5 = (400C)1/3/(αb2/3), we have

εn =
(400C)1/3

αb2/3(lnn)1/3 ·min

{
c
2/3
n , (1− cn)2/3,

(
(1− q3(cn))d −

√
d ln(2/α)

2n

)2/3} .

Since for n large enough,

εnαbn

8
·min

{
cn, 1− cn, (1− q3(cn))

d −
√

d ln(2/α)

2n

}
− 1

2
− n

√
4C

εn lnn

≥ εnαbn

10
·min

{
cn, 1− cn, (1− q3(cn))

d −
√

d ln(2/α)

2n

}
,

by Chebyshev’s inequality and (3.4), we obtain

µn,q1,n{L(1)
n ≥ cnn}

≤ 100Dn,q1,n(L
(1)
n )

α2b2ε2nn
2 min

{
c2n, (1− cn)2,

(
(1− q3(cn))d −

√
d ln(2/α)

2n

)2 }

≤ 400Cn2

α2b2ε3nn
2 lnn ·min

{
c2n, (1− cn)2,

(
(1− q3(cn))d −

√
d ln(2/α)

2n

)2 }
= α.

Thus, we deduce q1,n ≤ pn,α(cn), which is a contradiction to our previous as-
sumption. The proof of Proposition 3.1 is complete. �

Although a more general threshold phenomenon for the appearance of giant
component has been shown in this paper, the interesting conjecture (see [2:
Conjecture 1.2]) that a giant component emerges in an interval of length o(1) in
any expander remains open.

Acknowledgement� The author sincerely thanks the anonymous referees for
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paper.
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