期刊论文详细信息
Mathematica Slovaca
Convergence rates in the complete moment of moving-average processes
Qing-pei Zang1 
关键词: Rosenthal type inequality;    precise asymptotics;    complete moment;    moving-average processes;   
DOI  :  10.2478/s12175-012-0058-1
学科分类:数学(综合)
来源: Slovenska Akademia Vied * Matematicky Ustav / Slovak Academy of Sciences, Mathematical Institute
PDF
【 摘 要 】

In this paper, we discuss precise asymptotics for a new kind of moment convergence of the moving-average process $$X_k = sumlimits_{i = - infty }^infty {a_{i + k} varepsilon _i }$$, k ≥1, where {ε i: −∞ < i < ∞} is a doubly infinite sequence of independent identically distributed random variables with mean zero and the finiteness of variance, {α i: −∞ < i < ∞} is an absolutely summable sequence of real numbers, i.e., $$sumlimits_{i = - infty }^infty {left| {a_i } ight| < infty }$$.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080690934ZK.pdf 190KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:17次