期刊论文详细信息
Mathematica Slovaca | |
Convergence rates in the complete moment of moving-average processes | |
Qing-pei Zang1  | |
关键词: Rosenthal type inequality; precise asymptotics; complete moment; moving-average processes; | |
DOI : 10.2478/s12175-012-0058-1 | |
学科分类:数学(综合) | |
来源: Slovenska Akademia Vied * Matematicky Ustav / Slovak Academy of Sciences, Mathematical Institute | |
【 摘 要 】
In this paper, we discuss precise asymptotics for a new kind of moment convergence of the moving-average process $$X_k = sumlimits_{i = - infty }^infty {a_{i + k} varepsilon _i }$$, k ≥1, where {ε i: −∞ < i < ∞} is a doubly infinite sequence of independent identically distributed random variables with mean zero and the finiteness of variance, {α i: −∞ < i < ∞} is an absolutely summable sequence of real numbers, i.e., $$sumlimits_{i = - infty }^infty {left| {a_i } ight| < infty }$$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912080690934ZK.pdf | 190KB | download |