Mathematica Slovaca | |
Separating maps on weighted function algebras on topological groups | |
Rasoul Nasr-Isfahani1  Saeid Maghsoudi1  | |
关键词: convolution quasi-homomorphism; locally compact group; separating map; weight function; weighted function algebras; | |
DOI : 10.2478/s12175-011-0060-z | |
学科分类:数学(综合) | |
来源: Slovenska Akademia Vied * Matematicky Ustav / Slovak Academy of Sciences, Mathematical Institute | |
【 摘 要 】
Let G 1 and G 2 be locally compact groups and let ω 1 and ω 2 be weight functions on G 1 and G 2, respectively. For i = 1, 2, let also C 0(G i, 1/ω i) be the algebra of all continuous complex-valued functions f on G i such that f/ω i vanish at infinity, and let H: C 0(G 1, 1/ω 1) → C 0(G 2, 1/ω 2) be a separating map; that is, a linear map such that H(f)H(g) = 0 for all f, g ∈ C 0(G 1, 1/ω 1) with fg = 0. In this paper, we study conditions under which H can be represented as a weighted composition map; i.e., H(f) = φ(f ℴ h) for all f ∈ C 0(G 1, 1/ω 1), where φ: G 2 → ℂ is a non-vanishing continuous function and h: G 2 → G 1 is a topological isomorphism. Finally, we offer a statement equivalent to that h is also a group homomorphism.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912080690888ZK.pdf | 196KB | download |