期刊论文详细信息
Mathematica Slovaca | |
On the difference equation $y_{n + 1}= frac{{alpha+ y_n^p }}{{eta y_{n - 1}^p }} - frac{{gamma+ y_{n - 1}^p }}{{eta y_n^p }}$ | |
İlhan Öztürk1  Saime Zengin1  | |
关键词: difference equations; global stability; period-two solutions; | |
DOI : 10.2478/s12175-011-0058-6 | |
学科分类:数学(综合) | |
来源: Slovenska Akademia Vied * Matematicky Ustav / Slovak Academy of Sciences, Mathematical Institute | |
【 摘 要 】
In this paper, we investigate the global stability and the periodic nature of solutions of the difference equation $y_{n + 1} = frac{{alpha + y_n^p }}{{eta y_{n - 1}^p }} - frac{{gamma + y_{n - 1}^p }}{{eta y_n^p }},n = 0,1,2,...$ where α, β, γ ∈ (0,∞), α(1 − p) − γ > 0, 0 < p < 1, every y n ≠0 for n = −1, 0, 1, 2, … and the initial conditions y−1, y0 are arbitrary positive real numbers. We show that the equilibrium point of the difference equation is a global attractor with a basin that depends on the conditions of the coefficients.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912080690886ZK.pdf | 227KB | download |