期刊论文详细信息
Mathematica Slovaca
Synaptic algebras
David Foulis1 
关键词: spectral order-unit normed space;    special Jordan algebra;    convex effect algebra;    orthomodular lattice;    generalized Hermitian algebra;    convex effect algebra;    projections;    square roots;    carriers;    absolute value;    polar decoposition;    quadratic mapping;    Sasaki mapping;    invertible element;    regular element;    simple element;    spectral resolution;    spectrum;   
DOI  :  10.2478/s12175-010-0037-3
学科分类:数学(综合)
来源: Slovenska Akademia Vied * Matematicky Ustav / Slovak Academy of Sciences, Mathematical Institute
PDF
【 摘 要 】

A synaptic algebra is both a special Jordan algebra and a spectral order-unit normed space satisfying certain natural conditions suggested by the partially ordered Jordan algebra of bounded Hermitian operators on a Hilbert space. The adjective “synaptic”, borrowed from biology, is meant to suggest that such an algebra coherently “ties together” the notions of a Jordan algebra, a spectral order-unit normed space, a convex effect algebra, and an orthomodular lattice.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080690819ZK.pdf 297KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:6次