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ABSTRACT. A synaptic algebra is both a special Jordan algebra and a spectral
order-unit normed space satisfying certain natural conditions suggested by the
partially ordered Jordan algebra of bounded Hermitian operators on a Hilbert
space. The adjective “synaptic”, borrowed from biology, is meant to suggest that
such an algebra coherently “ties together” the notions of a Jordan algebra, a
spectral order-unit normed space, a convex effect algebra, and an orthomodular
lattice.
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1. Introduction

Our purpose in this article is introduce and study a class of partially ordered
algebraic structures, which we call synaptic algebras, that are simultaneously
spectral order-unit normed spaces [8] and special Jordan algebras, and that also
incorporate convex effect algebras [12] and orthomodular lattices [3, 14]. We have
borrowed from biology the adjective ‘synaptic’, which is derived from the Greek
word ‘sunaptein’, meaning to join together. A synaptic algebra (Definition 1.1
below) is required to satisfy certain natural conditions suggested by an important
spacial case, namely the partially ordered Jordan algebra of bounded Hermitian
operators on a Hilbert space.

The generalized Hermitian (GH) algebras introduced and studied by Sylvia
Pulmannové and the author in [9, 10] are synaptic algebras that satisfy a rather
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strong additional condition on bounded ascending sequences of pairwise commut-
ing elements — see Section 6 below for the details. Example 1.2 below exhibits
a commutative synaptic algebra which, in general, fails to be a GH-algebra,
showing that synaptic algebras are proper generalizations of GH-algebras. In
the sequel, we use the symbols R and N for the ordered field of real numbers and
the set of positive integers, respectively. Also, we use ‘iff” as an abbreviation for
‘if and only if’, and the symbol :=’ means ‘equals by definition’.

DEFINITION 1.1. Let R be a linear associative algebra with unity element 1
over R and let A be a (real) vector subspace of R. If a,b € A and B C A, we
write a C' b iff @ and b commute (i.e. ab = ba)' and we define
Cla) ={beA: aCb}, C(B):= m C(b), and CC(a):=C(C(a)).
beB
The vector space A is a synaptic algebra with enveloping algebra R iff the fol-
lowing conditions are satisfied:

SA1l. A is a partially ordered archimedean real vector space with positive cone
At ={a€e A: 0<a},1 € A" is an order unit in A, and | - || is the
corresponding order-unit norm.>

SA2. If a € A then a® € AT.

SA3. If a,b € AT, then aba € AT.

SA4. Ifa € Aand b€ AT, then aba =0 = ab = ba = 0.
SA5. If a € A™, there exists b € AT N CC(a) such that b* = a.

SA6. If a € A, there exists p € A such that p = p? and,
forallbe A, ab=0 < pb=0.

SAT. If 1 <a € A, there exists b € A such that ab = ba = 1.

SA8. If a,b € A, a1 < as < ag < --- is an ascending sequence of pairwise
commuting elements of C'(b) and lim ||a — a,|| =0, then a € C(b).
n—oo

We define P := {p € A: p = p?}. Elements p € P are called projections. We
define the unit interval Ein Aby E:={e€ A: 0 <e<1}. Elementse € E
are called effects.®

If R is a von Neumann algebra, then the real vector space A of all self-adjoint
elements in R is a synaptic algebra. More generally, the self-adjoint elements in
a Rickart C*-algebra ([13, §3]), and in particular in an AW*-algebra ([15]), form
a synaptic algebra. Additional examples of synaptic algebras are: JW-algebras

13We understand that a product of elements of A is the product as calculated in R, which may
or may not belong to A.

2See Definition 1.6 below.

3Actually, E is a so-called convez effect algebra([12]).
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([17]), AJW-algebras ([17, §20]), JB-algebras ([2]), and the ordered special Jor-
dan algebras studied by Sarymsakov, et al. [16]. All the foregoing examples are
norm complete, but the commutative synaptic algebra in the following example
need not be norm complete.

Example 1.2. Let % be a field of subsets of a nonempty set X, let A be the
commutative and associative real linear algebra, with pointwise operations, of
all functions f: X — R such that

(i) NeR = f71(\) €.Z and
(i) {f(z): = € X} is finite.

Then, with the pointwise partial order, A is a synaptic algebra with A as its
own enveloping algebra. The projections in A are the characteristic set functions
(indicator functions) of sets in ..

STANDING ASSUMPTIONS 1.3. In the sequel, we assume that A is a synaptic
algebra with enveloping algebra® R, that F is the set of effects in A, and that P
is the set of projections in A. We understand that both E and P are partially
ordered by the restrictions of the partial order < on A. To avoid triviality, we
assume that 1 # 0. As is customary, we shall identify each real number A € R
with the element A1 € A, so that R is a one-dimensional linear subspace of A. If
nisoneof 1,2,...,8, then [SAn| will always refer to the corresponding condition
in Definition 1.1.

By [SA2], a € A = a® € A, hence A is organized into a special Jordan
algebra under the Jordan product aob:= 1 (ab+ba) = }[(a+b)?—a*—b*] € A
for all a,b € A. Clearly, loa=aol=a, ie., Ais a unital Jordan algebra.

Remarks 1.4. Let a,b,c € A. Then a Cb = ab =ba =aob € A. As
a’> € A and a C a?, it follows that a® = a o a? € A, and by induction, a" € A
for all n € N. Consequently, A is closed under the formation of real polynomials
in a. Let ¢ := 2(aob). Then aba = aoc—a?ob € A, hence aba € A. Thus,
acb + bca = (a + b)c(a + b) — aca — beb € A.

LEMMA 1.5. Ifa,be€ AT and a Cb, then ab =ba € A*.

Proof. Assume that a,b € AT and a C' b. By Remarks 1.4, ab = ba € A.
By [SA5], there exist z € AT N CC(a) and y € AT N CC(b) such that a = z?
and b = y2. As x € CC(a) and a C b, we have x C b; hence, as y € CC(b),
it follows that x C'y. Therefore, zy = yx € A by Remarks 1.4, and we have
(ry)? = 2%y? = ab. Consequently, ab € AT by [SA2]. d

4We shall not be concerned with the detailed structure of the enveloping algebra R — we
regard R merely as an arena in which to study A, E, and P.
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By [SA1], A is an order-unit normed space according to the following definition
(adapted to our present notation).

DEFINITION 1.6. An order-unit normed space [1, pp. 67-69] is a partially or-
dered real vector space A with a distinguished element 1 € A, called the unit,
such that:

(i) Ais archimedean, i.e., if a,b € A and na < b for all n € N, then —a € A™.

(i) 0 < 1 and 1 is an order unit® in A, i.e., for every a € A, there exists n € N
such that a < n.b

The order-unit norm || - || on A is defined by
(iii) |laf] :==inf{fA€R: 0 < Xand — X <a <A}

The order-unit norm || - || is a bona fide norm on A, and it is related to the
partial-order structure of A by the following properties,” which we shall use
routinely in the sequel: For all a,b € A,

—llal]| <a <la|l, and if —b<a <b, then |al < b].

If (an)nen is a sequence in A and a € A, the notation lim a,, = a, or simply
n—oo

an — a, will mean that a is the limit of (an)nen in the norm topology, i.e., that
lim ||a —a,| =0.
n—oo

LEmMMA 1.7. Leta, b€ A and 0 < A € R. Then:
(i) “A<a< X < a? <)\
(i) fla®(| = [|all>.
(iii) 0<a,b = [la— bl < max{llall, [|b]|}.
(iv) llacdl| < lallfl]-
(v) IfaCb, then |[ab]| < [[al|[|b].

Proof If —A <a < A, then0 < A—a, A +a, and as (A—a)C(A+a), Lemma 1.5
implies that 0 < (A — a)(A + a) = A% — a®. Conversely, suppose that a? < \2.
Then 0 < (A — a)? by [SA2], whence 0 < (A\? — a?) + (A — a)? = 2(A? — Xa) and
since 0 < ), it follows that a < \. As a? < A2, we also have (—a)? < A2, whence
—a <\, ie., =\ < a, proving (i).

Part (ii) follows from (i).

To prove (iii), we can assume that ||a| < ||b]]. As 0 < b, we have a < ||a|| <
6]l < ||b]| + b, whence a — b < ||b]|. Also, as 0 < a, we have b < ||b]| < ||b]| + a,
whence b —a < ||b]|, and therefore —||b|| < a —b < ||b]|. Consequently, ||a —b|| <
[Ib]] = max{||all,||b]|}. To prove (iv), it will be sufficient by normalization to

5Some authors use the terminology “strong order unit”.

6Recall that we are identifying n € N C R with nl.
"See [1, Proposition I1.1.2] and [11, Proposition 7.12 (c)]
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prove that |la]| = ||| =1 = |laob|| < 1. Thus, we assume ||a| = ||b]| = 1, so
that ||a £ b|| < 2, and therefore by (ii), ||(a + b)?|| < 4. Consequently, by (iii),

laob] = lita+8)? ~ (@~ <, max{|l(a+ 7] (a— )} <1

If a C'b, then ab = a o b, so (v) follows immediately from (iv). O

2. Square roots, projections, and carriers

Remarks 2.1. Let a,b € A. Then:
(i) By [SA4] with b =1, we have a® =0 = a = 0.
(ii) f 0 <a,band a+b =0, then 0 <a= —b <0, whence a =b=0.

THEOREM 2.2. Let 0 < a € A. Then there exists a unique r € A such that
0 <r and r? = a; moreover, r € CC(a).

Proof. Suppose that 0 < a € A. By [SA5|, there exists b € CC(a) such that
0 < bandb? =a. Asa € C(a), we have a C b. Suppose also that » € A with
0 <7, 72 = a. Obviously, r C a, whence b C r. It will be sufficient to prove that
r=b.

By [SA5], there exists s € CC(b) such that 0 < s and s> = b. As b,r € C(b),
we have s C'b and s C' r. By [SA5] again, there exists t € CC(r) such that 0 <t
and t? =r. As b,r € C(r), we have t C'b and ¢t C'r.

Since s C'b and sC'r, it follows that sC (b—7), hence s(b—r) = so(b—r) € A.
Likewise, since ¢t C b and t C r, we have t(b —r) € A. Moreover, as b*> = r% = q,
it follows that

(s(b—=r)) 2+ (t(b—1))? = (s> +t)(b—7)? = (b+7)(b—71)* = (B* —rH)(b—7r) = 0.
But 0 < (s(b—r))? and 0 < (¢(b — r))? by [SA2], whence (s(b — r))? =
(t(b—1))?> =0, s0 s(b—7r) =t(b—17) =0 by Remarks 2.1.

As s(b—7) =0, it follows that b(b —r) = s2(b—r) = 0. Likewise, r(b— 1) =
t2(b—r) = 0, whence (b—17)? = b(b—r) —r(b—7) =0, and by Remarks 2.1.(i),
r=b. O

If 0 < a € A, then of course, the unique element r in Theorem 2.2 is called

the square root of a, and in what follows we denote it in the usual way as a'/?.

Remarks 2.3. Let p € P. Then, as p = p?, [SA2] implies that 0 < p. Also,
(1-p)2=1-2p+p?>=1-p,s01—pc P, and therefore 0 <1 —p, ie,p<1.
Consequently, 0 < p < 1, and it follows that P C F.
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THEOREM 2.4. Let e € E and p € P. Then the following conditions are mutu-
ally equivalent:

(i) e <p.
(ii) e = ep = pe.
(iii) e = pep.
(iv) e =ep.
(v) e =pe.
Proof.

(i) = (ii). Assume that e < p and let d := p —e. Then 0 < e,d,1 — p,
e+ d=p, and

(1=ple(l —p)+ (1 =p)d(l—p)=(1-p)p(l—p)=0.

By [SA3],0 < (1—p)e(1—p), (1—p)d(1—p), and it follows from Remarks 2.1.(ii)
that (1—p)e(1—p) = (1—p)d(1—p) = 0. Therefore, by [SA4], (1—p)e = e(1—p)
=0, i.e., e = pe = ep.

(ii) = (iii) = (iv). Follows from p = p.

(iv) <= (v). By [SAdl,e=ep = e(l—p)=0 = (1 —ple(1—p) =0
= (1—p)e =0 = e = pe, and the converse implication follows by symmetry.

(v) = (i). Assume (v). Since (iv) <= (v), we have pe = ep = e, so
(1—e)p=p(1l—¢€) =p—e, whence 0 < p — e by Lemma 1.5, and therefore
e <p. O

LEMMA 2.5. Lete € E. Then:
(1) e2e FEwithd<e?<e.
(i) 2e —e? € E.
(iii) e—e? € Ewithe —e? <e, 1 —e.

Proof. By[SA2],0<e? andaseC(1—e)with 0 <e,1—e¢, Lemma 1.5 implies
that 0 < e(l — ), whence 0 < e? < e < 1, proving (i). Also, 0 < (1 —e)?
1—2e+e? soby (i), 0 < e+ (e—e?) =2e—e? <1, proving (ii). Part (i
follows from (i) and (ii).

mRS]
N—

Obviously, E is a convex set, and by Remarks 2.3, P C E. The following
theorem characterizes, in various ways, those effects p € E that are projections.

THEOREM 2.6. Ifp € E, then the following conditions are mutually equivalent:

(i) pe P.
(ii) f AR, 0< A<, ande € F, then e <p < e <p.
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(iii) p is an extreme point of the conver set E.
(iv) Ife,fie+ f € E, thene, f <p = e+ [ <p.
(v) Ife€e E ande <p,1 —p, thene=0.

Proof.

(i) = (ii). Suppose p € P,e€ E, and 0 < A < 1. Then 0 < Xe <e <1, so
Ae € E. Therefore, by Theorem 2.4, de < p <= dep=Ae < ep=e <
e <p.

(ii) = (iii) Assume (ii) and suppose that p =Xe + (1 —\)f with 0 < A < 1
and e, f € E. Then Ae < p, whence ¢ < p = Ae+ (1 — \) f, therefore (1 — N)e <
(1 —X)f, and it follows that e < f. Similarly, f <e,soe= f =p.

(iii) = (i) Assume (iii). By parts (i) and (ii) of Lemma 2.5, p?, 2p—p? € E,
and since p = Jp* + 1(2p — p?), (iii) implies that p = p? = 2p — p?, whence
peP.

(i) = (iv) Assume that p € P, e,f,e+ f € E, and e, f < p. Then by
Theorem 2.4, e = pep and f = pfp. Ase+ f € E, we have 0 < 1 — (e + f),
whence by [SA3], 0 < p(1 —e— f)p, i.e., e+ f = pep+ pfp < p? =p.

(iv) = (v) Assume (iv) and suppose that e € E with e < p,1 —p. Then
e,p € E,0<e+p<1, and e,p < p, whence e + p < p by (iv), and therefore
e<0.But0<e, soe=0.

(v) = (i) Assume (v). By Lemma 2.5.(iii), 0 < p — p?> < p,1 — p, whence
p=p* by (v). O

THEOREM 2.7. Let a € A. Then there exists a unique projection p € P such
that, for allb € A, ab=0 < pb=0.

Proof. By [SA6], there exists p € P such that, for all b € A, ab = 0 <=
pb=10. Suppose ¢ € P and, for all b € A, ab = 0 <= g¢gb = 0. Putting
b =1—p, we find that a(1 — p) = 0, whence ¢(1 — p) = 0, i.e., ¢ = gp, and
therefore ¢ < p by Theorem 2.4. By symmetry, p < g, so p = ¢, proving the
uniqueness of p. O

DEFINITION 2.8. If a € A, then the unique projection p in Theorem 2.7 is called
the carrier projection of (or for) a and is denoted by a°. Thus, a® € P and, for
allbe A, ab=0 < a°b=0.
LEMMA 2.9. Leta,b€ A andp € P. Then:

(i) pb=0 < bp=0.

(ii) pa=a <= ap=a.

(iii) aa® = a®a = a.

(iv) ab=0 <= ba =0.
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Proof. By [SA4] and the fact that 0 < p, we have pb =0 = bpb=0 =
bp = 0, whence pb =0 = bp = 0. A similar argument yields the converse,
proving (i). By (i), pa =a <= (1-p)a=0 < a(l —p) =0 < ap = a,
proving (ii). As a° € P, we have a°(1 —a®) =0, so a(l —a®) =0, i.e., aa® = a,
whence a°a = a by (ii), proving (iii). To prove (iv), assume that ab = 0. Then
a®b = 0, so ba® = 0 by (i). Also, a = a®a by (iii), whereupon ba = baa = 0.
Thus, ab =0 = ba = 0, and the converse follows by symmetry. O

THEOREM 2.10. Let a,b € A. Then:
(i) a=0 < a®°=0.
(i) a € P <= a=a°.
(iii) a® is the smallest projection p € P such that a = ap.
(iv) Ife € E, then e° is the smallest projection p € P such that e < p.

(v) ab=0 <= al®° =0 < a°b° =0.

(vi) a® € CC(a).

(vii) Ifn € N, then (a™)° = a°.
(viii) If 0 < a < b, then a® < b°.
Proof.

(i) and (ii) are obvious from the definition of a°.

(iii) We have aa® = a by Lemma 2.9.(iii). Suppose that p € P and a = ap.
Then a(1 — p) = 0, whence a°(1 — p) = 0, so a® = a°p, and therefore a° < p by
Theorem 2.4.

(iv) Part (iv) is a consequence of (iii) and Theorem 2.4.

(v) By Lemma 2.9.(iv),

ab=0 <= ba=0 < Y’a=0 <= al®° =0 < a°° =0.
(vi) Suppose that ¢ € C(a) and let d := (1 — a®)ca® 4+ a®c(1 — a°). Thus,
d € A (see Remarks 1.4), and as aa® = a, we have
ad = a(l —a®)ca® + aa’c(l —a®) =0+ ac(l —a®) = ca(l —a®) =0,
and therefore
0=a’d=04a’(1—a’) =ac— a°ca®, ie., a°c=aca’.
Also, as a®°d = 0, Lemma 2.9 implies that 0 = da® = (1—a°)ca®, i.e., ca® = a°ca®.
Therefore ca® = a°ca® = a°c, so ¢ € C(a®).

(vil) Let n € N. As aa® = a, we have a"a® = a”, whence (a")° < a°
by (iii). We have to prove that a® < (a™)°. Put ¢ := 1 — (a™)°. By (vi),
C(a™) C C((a™)°), whence a C q. Evidently, a"q = 0, so there is a smallest

positive integer k such that afq = 0. If k is even, then a*/2¢a*/?2 = 0, so
a*/2q = 0 by [SA4], contradicting the minimality of k. Therefore, k is odd
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and a**1q = 0, whence a**1)/2¢a(*+1)/2 = (0, s0 a**+1)/2¢ = 0 by [SA4] again,
whereupon k < (k +1)/2, i.e., k = 1. Therefore, ag = 0, whence a = a(a™)°,
and again by (iii), a® < (a™)°.

(viii) Suppose that 0 < a < b. The case b = 0 is trivial, so we assume that
b#0. Let X\ :=||b]|7, e :== Aa, and f := A\b. Clearly, e, f € E, e < f, €° = a°,
and f°=10° By (iv), e < f < f° € P, whence e° < f°, i.e., a° < b°. d

3. Absolute value and polar decomposition

If a € A, then by [SA2], 0 < a?, so we can formulate the following definition.

DEFINITION 3.1. If a € A, then the absolute value of a is defined and denoted

by |a| := (a?)}/2. Also we define a* := 1(|a| + a) and a~ := }(|a| — a).
Remarks 3.2. Let a € A. Obviously, 0 < |a| = | — a] and |a|? = a®. Also,
C(a) C C(a?) C C(Ja]), and therefore |a|,a™,a~ € CC(a). Moreover, a =
at —a ,lal=at+a",ata” =a"at =0,and a= = (—a)™.

THEOREM 3.3. Leta € G, p:= (a™)°, and q := (a™)°. Then:

(i) p,q€CCla) (ii) pClal and ¢Clal
(iii) pa=ap=a™. (iv) ga=aq=—a".
(v) 0<plal=lalp=a". (vi) 0<gla]=lalg=a".
(vil) pg=gqp=0. (viii) p+q=a°.
Proof.

(i) As C(a) C C(a™) and C(a™) C C((a™)°), we have C(a) C C(p). Likewise,
as a” = (—a)T and C(a) = C(—a), we have C(a) C C(q).

(ii) As |a| € C(a), (ii) follows from (i).

(iii) By (i), pa = ap. Also, a™ = (a™)°at = pa™, and since ata™ = 0, it
follows that pa~ = 0, whence pa = p(a™ —a™) = a™.

(iv) By (iii), —ga = g(—a) = (~a)* =a".

(v) By (ii), p C |a|, and as in the proof of (iii), pla| = p(a®™ +a~) = a™. As
0 < pand 0 < |a|, we have 0 < p|a|] by Lemma 1.5.

(vi) The proof of (vi) is similar to the proof of (v).

(vii) As aTa™ = 0, we have pa~ = 0, whence pg = 0.

(viii) By (vii), (p+q)®> = p* +¢*> = p+¢q, so p+q € P. By (iii) and
(iv), a(p+ q) = a™ —a~ = a, whence a® < p + ¢ by Theorem 2.10.(iii). Let
r:=1-a° Thenr € Pand 0 = ar = atr—a~r,ie., aT™r = a~r. Consequently,
atr =patr =pa~r = pga~r =0 by (vii), and it follows that pr = 0. Likewise,
gr =0, so (p+ q)r = 0, and therefore (p + q)a® = (p+q)(1 —7) =p+gq, ie.,
P+ q < a® by Theorem 2.4; hence p + g = a°. (]
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COROLLARY 3.4. If 0<a,bc€ A and a Cb, then a®> < b* < a <b.

Proof. Assume the hypotheses and suppose that a? < b?. As 0 < (b—a)?, we
have

0<(b—a)?+0b*—a®=20b*—ab), whence 0 < (b—a)b. (1)
Also, by parts (vii), (viii), and (iii) of Theorem 2.10,
a® = (a*)° < (b*)° = 1°, whence ab® = a. (2)

Let ¢ := (b—a)" and d := (b — a)~. Then by Remarks 3.2 and parts (v) and
(vi) of Theorem 3.3, b € C(b—a) C C(c) N C(d), and we have
bCec, bCd, cCd, 0<¢c, 0<d, dc=0, andb—a =c—d. (3)
By (1) and (3),
0<(b—a)b=(c—d)b=cb—db. (4)
Since d C (¢b — db) and 0 < d, it follows from (4), (3), and Lemma 1.5 that
0 < d(cb — db) = —d?b, i.e., d*b < 0. Likewise, as 0 < d?, 0 < b, and b C d?, we
also have 0 < d?b; hence d?b = 0, and consequently
d°b = (d*)°b=0, so db=0, whence db® = 0. (5)
Asce C(b) CC(b°), 0 < ¢, and 0 < b°, we have 0 < ¢b® by Lemma 1.5, whence
by (5), (3), and (2),
0<cb®=(c—d)b° = (b—a)b® =bb° —ab® = b — a.
Conversely, suppose that a < b, i.e., 0 <b—a. As aCb, we have a C (b—a), and

it follows from Lemma 1.5 that 0 < a(b — a) = ab — a?, i.e., a® < ab. Similarly,
0 < (b—a)b=b?— ab, whence ab < b2, and it follows that a? < b2. O

DEFINITION 3.5. If a € A, then the signum of a is defined and denoted by
sgn(a) := (a*)® — (a7)°.
THEOREM 3.6. Let a € A. Then:

(i) sgn(a) € CC(a).

(i) sgn(a)? =
(iti) sgn(a)a = asgn( ) = lal.
(iv) sgn(a)la| = |a|sgna = a.

Proof. By Theorem 3.3.(i), C(a) € C((a™)°) N C((a™)°), from which (i) fol-
lows. Part (ii) follows from parts (vii) and (viii) of Theorem 3.3, and parts (iii)
and (iv) are consequences of parts (iii) and (iv) of Theorem 3.3. d

The formula a = sgn(a)|a|] = |a|sgn(a) in Theorem 3.6 is called the polar
decomposition of a.
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COROLLARY 3.7. Let a,b € A. Then:
(i) ab=0 <= |a||b] = 0.
(ii) |al® = a°.
Proof. We have ab = 0 = |a||b] = sgn(a)absgn(b) = 0, and conversely,

la||b| =0 = ab = sgn(a)|al|b| sgn(b) = 0, proving (i). Arguing as above, we
find that |a|b =0 <= ab =0, whence |a|® = a°, proving (ii). O

4. Quadratic, compression, and Sasaki mappings

DEFINITION 4.1. If a € A, the mapping J,: A — A defined by J,(b) := aba
for all b € A is called the quadratic mapping determined by a. If p € P, the
quadratic mapping J,, is called the compression on A with focus p.

THEOREM 4.2. Ifa € A, then the quadratic mapping J,: — A is both linear
and order preserving.

Proof. Obviously, J, is linear. Suppose that 0 < h € A. By [SA3], 0 < |a|h|al,
and we define k := (|a|h|a|)*/2. Thus, k2|a|® = |a|h|al|al® = |a|h|a| = k2, so by
(ii) and parts (vii) and (iii) of Theorem 2.10,

k° = (k*)° < |a|® = a°, whence ka® = k. (1)
Let w := sgn(a). Then by parts (ii) and (iv) of Theorem 3.6, w? = a° and
a = w|a| = |aw; hence by (1)

0 < (wkw)? = whkw?kw = wka®kw = wk*w = wla|hlajw = aha = J,(h).

Suppose b,c € A with b < ¢, and put h := ¢ —b. Then 0 < h, therefore
0 < Ju(h) = Ju(c) — Ju(b), whence J,(b) < J,(c), i.e., J, is order preserving. [

Remark 4.3. Condition [SA3] requires that a,b € AT = aba € A™; however,
by Theorem 4.2, we now have the stronger result b € At = aba € AT for all
a € A.

LEMMA 4.4. Leta, b€ A andp € P. Then:
(@) [1a®)] < lla®[[l1Bll = lla/*[[t]]-
(ii) Jo: A — A is norm continuous.

(iii) Ifp # 0, then ||p|| = 1.
(i) [[Jp(a)[l < llall-
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Proof. As —||b|| <b < |[b]|, we have

=lIblla* = a(~[bl)a < aba < aljblla = [|blla*,

whence [[aba|| < [[(]|bl|a®)|| = [|a®|[[|bl|. By Lemma 1.7.(ii), [|a®|| = [|a|[®, proving
(i), and (ii) follows from (i). Also by Lemma 1.7.(ii), ||p||*> = ||p?|| = ||p||, from
which (iii) follows, and (iv) is a consequence of (i) and (iii). O

Let p € P and e € E. By Theorem 4.2, J, is linear and order preserving.
Clearly, J,(1) =p € P C E. By Theorem 2.4, e <p = J,(e) = e. Also, if
Jp(e) = 0, then pep = 0, whence pe = ep = 0, so e < 1 — p. Conversely, as a
consequence of [4, Corollary 4.6], compressions on A are characterized as in the
following theorem.

THEOREM 4.5. Let J: A — A be a linear and order-preserving mapping such
that J(1) < 1 and, for everye € E, e < J(1) = J(e) =e. Thenp:= J(1) € P
and J = Jp.

LEMMA 4.6. Leta € A and p € P. Then:
(i) a € C(p) = a=Jp(a)+ Ji_p(a).
(ii) C(p) is norm closed in A.
Proof. If aCp, it is clear that a = pap+(1—p)a(l—p). Conversely, if a = pap+

(1 —p)a(l —p) then pa = pap = ap, proving (i). Define the mapping ¢,: A — A
by ¢p(a) := Jp(a) + Ji—p(a). By Lemma 4.4.(ii), ¢, is norm continuous, and by

(i), C(p) is its set of fixed points, proving (ii). O
THEOREM 4.7. Let (an)nen be a sequence in A and suppose that lim a, = a € A.
n—oo
Then:
(i) If ap, < b€ A foralln € N, than a <b.
(i) If a1 < ag < ---, then a is the supremum (least upper bound) of (an)nen

mn A.

(iii) The positive cone AT is norm closed in A.

Proof. By hypothesis, for each m € N, there exists IV, € N such that, for all
n €N,

Np<n = ap,—a<l|a,—a|]| <1/m = a, <a+1/m. (1)

(i) Assume the hypothesis of (i). Then, for all m € N, a —b < a —ap,,. Let
p:=((a—b)")° € CC(a—0b). Then, (a—b)" =pla—b) =pla—b)p = J,(a—Db),
so by Lemma 4.4.(iv) and (1), for every m € N,

(a=b)" =Jyla—b) < Jp(a—an,) < [Jp(a—an,)| < lla—an, || < 1/m,
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whence m(a—b)* <1, and since A is archimedean, it follows that (a —b)* < 0.
But 0 < (a—0b)", so (a—b)* =0, and consequently, a —b = —(a—b)~ <0, i.e.,
a <b.

(ii) By (1), for each m € N,

ap<ax<---<ay, <a+1/m;

hence a, < a + 1/m for all n € N. Therefore, for each n € N, we have
m(a, —a) <1 for all m € N, and since A is archimedean, it follows that
anp —a <0, ie, a, < a. Ia, <be Aforall neN, then by (i), a < b;
hence a is the least upper bound of (a,)nen-

(iii) Let (cn)nen be a sequence in A' and suppose that ¢, — c¢. Then
—cp — —¢, and as —c, < 0foralln € N, (i) implies that —c < 0,i.e.,c€ AT. [

By combining the quadratic mapping .J, with the carrier, we obtain the Sasaki
mapping on A as per the following definition.

DEFINITION 4.8. For each a € A, the Sasaki mapping® ¢o: A — P is defined
by ¢4(b) := (J4(b))° = (aba)® for all b € B.

THEOREM 4.9. Let a,b,c € A. Then:
(1) Gulb) < du(1) = a°.
(i) 0 <b<ec = ¢a(b) < Pulc).
(iii) If 0 < b, then ¢q(b)c =0 = ¢4(c)b = 0.
(iv) If0 < b,c, then ¢o(b)c =0 < ¢4(c)b=0.
(v) If0 < b, then ¢a(b) = ¢a(b°).

Proof.

(i) As abaa® = aba, Theorem 2.10.(iii) implies that ¢4(b) = (aba)® < a°.
Also, ¢4 (1) = (a?)° = a° by Theorem 2.10.(vii).

(ii) Assume that 0 < b < ¢. Then 0 < J,(b) < J,(c), s0 ¢u(b) < pa(c) by
Theorem 2.10.(viii).

(iii) Suppose that 0 < b and ¢4(b)c = 0. Then (aba)°c = 0, whence abac = 0,
and therefore (aca)b(aca) = ac(abac)a = 0, whereupon acab = 0 by [SA4], and
it follows that (aca)°b =0, i.e., ¢,(c)b = 0.

(iv) Follows from (iii).

(v) Suppose that 0 < ¢. We have ¢4(c)b = 0 <  ¢,(c)b° = 0, and as
0 < b°, it follows from (iv) that ¢,(c)b® =0 <= ¢, (b°)c = 0. Consequently,
pa(b)c =0 <= ¢4(b°)c = 0. Putting ¢ = 1 — ¢,(b°), we find that ¢,(b) =
D0 (0)Pa(b°), hence ¢, (b) < ¢, (b°). Similarly, putting ¢ = 1 — ¢4(b), we obtain

() < gu(b). O

8The terminology derives from the fact that, for p € P, the restriction of ¢, to P is a so-called
Sasaki projection on P [14, p. 99]. See Theorem 5.6 below.
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THEOREM 4.10. Let 0 # v € P and define vAv := J,(A) = {vav : a € A}
={beA: b=bv=wvb. Then vAv is norm-closed in A and, with the
partial order inherited from A, vAv is a synaptic algebra with unit v and en-
veloping algebra vRv.? Moreover, the order-unit norm on vAv is the restric-
tion to vAv of the order-unit norm on A, and for all a,b € vAv, we have:
a o b, a® la|,a™, a”,sgn(a) € vAv; J,(A) C vAv; ¢.(A) C vAv; and
0<a = a'/? € vAv.

Proof. By Lemma 4.4.(ii), J,: A — A is norm continuous, and since vAv is
the set of fixed points of J,, it follows that vAv is a norm-closed linear subspace
of A. Let b € vAv. Then there exists n € N such that b < n = nl; hence
b= J,(b) <nJ,(1) = nv, so v is an order unit in vAv. By a similar argument,
if 0 <A éeR,then —A <b< A = =X <b < A conversely, —Av <
b < 2w = —-X<b< X follows from the fact that 0 < v < 1; hence
|6l =inf{O <A e€R: —Av <b < Av}. Thus, [SA1] holds for vAv.

That vAv satisfies [SA2]-[SA4] is obvious. If 0 < b € vAw, then, since b =
bv = vb and b/? € CC(b), we have 0 < vb'/2v = vb'/2 = b1/2¢ with (vb'/2)2 = b;
hence b'/2 = vb'/? by the uniqueness of square roots (Theorem 2.2), and it
follows that b'/2 € vAv. Thus, vAv satisfies [SA5]. If b € vAv, we again have
b = bv = vb, whence b° < v, and since b° € CC(b), it follows easily that
b° € vAv. Thus, vAv satisfies [SAG].

To show that vAv satisfies [SAT], suppose that v < b € vAv. Then 1 =
v+ (1—v) <b+1—v with b =vb=0bv. By [SAT7], there exists ¢ € A such
that 1 = ¢(b+1—v) = (b+ 1 —v)e. Applying J, to both sides of the latter
equation, we find that v = vebv = vbev = vevb = bvcw, and since vev € vAw, it
follows that vAv satisfies [SA7]. Obviously, vAv inherits condition [SA8] from
A. We omit the completely straightforward proofs of the remaining assertions
of the theorem. O

5. Orthomodularity of the projection lattice

DEFINITION 5.1. The mapping +: P — P is defined by pt := 1 — p for all
p € P. If p,q € P, we say that p is orthogonal to ¢, in symbols p L g, iff p < ¢*.

We note that p L. ¢ = ¢ L p and that p L. p <= p = 0. In this section
we are going to prove that, with p — p := 1 — p as the orthocomplementation,
P is a orthomodular lattice as per the following definition ([3, 14]).

9n dealing with the synaptic algebra vAv in the presence of the synaptic algebra A, we cannot
follow the convention (previously adopted for A) of identifying real numbers A with multiples
Av of the unit element v.
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DEFINITION 5.2. Let X be a partially ordered set (poset). A mapping z — x+
from X to X is called an involution iff it is order reversing (z <y = y*+ < z7t)
and of period 2 ((z+)*+ = z) for all z,y € X. An orthomodular poset (OMP)
is a partially ordered set X with a smallest element 0, a largest element 1, and
an involution +: X — X, called the orthocomplementation, such that, for all
z,y € X:
(i) The infimum (greatest lower bound) z A z+ of z and z exists in X and
rAxt=0.

(ii) If # <y, then the supremum (least upper bound) x V y exists in X.

(iii) If z <y, then y = 2 V (21 A y).
An orthomodular lattice (OML) is an OMP X that is a lattice (i.e., every pair
z,y € X has an infimum x A y and a supremum z Vy in X.)

Let X be a poset and let a,b,x,y € X. If we write a = x Ay, or x Ay = a, we
mean that the infimum (greatest lower bound) x Ay of x and y exists in X and
that it equals a. A similar convention applies to an existing supremum (least
upper bound) b =z V y of x and y in X. An involution z — z* on X gives rise
to a De Morgan duality on X whereby existing infima are converted to suprema
and vice versa. For instance, if a = x Ay, then a* =zt vV y+. Also, if X has a
smallest element 0 and a largest element 1, then 0+ = 1 and 1+ = 0. Obviously,
the mapping p — p = 1 — p (respectively, e — 1 — ¢) is an involution on the
poset P (respectively, on the poset E), and a — —a is an involution on A.

Suppose that X is an OMP with 2 — 2+ as the orthocomplementation.
Then by Definition 5.2.(i) and De Morgan duality, we have both 2 A 2+ = 0 and
zVat =1, ie., 1 is an orthogonal complement, or for short, an orthocomplement
of zin X. Let z,y € X with < y. Then z < (y*)*, whence x V y* exists in X
by Definition 5.2.(ii), and therefore z- Ay = (zVy)' exists in X by De Morgan
duality. Since x < xVyt = (z+ Ay)t, it also follows from Definition 5.2.(ii) that
the supremum zV (2 Ay) exists in X. The condition z <y = y =2V (zTAy)
in Definition 5.2.(iii) is called the orthomodular law.

LEMMA 5.3. For all p,q € P:
(i) pCq = pg=pAgq.
(i) p L g < pg=0.
(iii) p L g = pVg=p+gq.
(iv)p<q = qg—p=p-ANgeP.
(v) With p s p*t :=1—p as the orthocomplementation, P is an OMP.

Proof.
(i) Assume that pg = gp. Obviously, (pq)? = pq, so pq € P. Also p(pq) = pq
and ¢(pq) = pg, so pqg < p,q by Theorem 2.4. Suppose that r € P and r < p, q.
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Again by Theorem 2.4, rp = pr = r and rq = qr = r, whence rpq = r, i.e.,
r < pq. Therefore pg = p A q.

(ii) By Theorem 24, p L ¢ < p<1—q <= p=p(1—q)=p—pg
pq = 0.

(iii) Suppose that p L ¢ Then pg = 0 by (ii), so gp = 0 by Lemma 2.9.(iv),
and it follows that (p+¢q)? = p*+¢*> =p+gq,ie.,p+q € P. As0 < p,q, we have
p,q < p+ q. Suppose that r € P with p,q < r. Then, by Theorem 2.4, p = pr
and ¢ = ¢r, whereupon p+q = (p+q)r, i.e., p+¢q < r. Therefore, p+q=pVgq.

(iv) Suppose that p < ¢ = (¢1)*. Then by (iii), p+ ¢+ = pV ¢+ € P, whence
(p+g" ) =p-AgeP. But (p+g ) =1-(p+1-q) =q—p

(v) Obviously, 0 is the smallest element and 1 is the largest element in the
poset P. In view of (ii), it remains only to show that the orthomodular law
holds in P. But, if p,q € P with p < g, then by (iv), ¢ —p = p* A ¢ and by (iii),
¢=p+(@-p)=p+ @ Ag)=pV (" Aq). O

THEOREM 5.4. Let a € A. Then:

(i) Ifp,q € P, then ¢a(p) L g <= p L ¢a(q).
(il) ¢q preserves all existing suprema in P, i.e., if @ C P and r =\ Q, then

¢a(r) = V{d)a(Q) HIVAS Q}

Proof. Part (i) follows from Theorem 4.9.(iv) and Lemma 5.3.(ii). To prove
part (ii), suppose that @ C P and r = \/ Q. Then, for all ¢ € Q, 0 < r < g,
whence ¢4(q) < ¢a(r) by Theorem 4.9.(ii). Suppose that t € P and ¢,(q) <t
for all ¢ € Q. Then, for all ¢ € Q, ¢.(q) L t*+, whence, by (i), ¢ L ¢a(t1), i.e.,
q < (¢a(tt))t, and it follows that 7 < (¢,(t+))L. Consequently, by (i) again,

ba(r) Lt ie., ¢o(r) < t, and therefore ¢, (r) = \/{qba(q) D q€ Q} d
LEMMA 5.5. Let p,q,r € P. Then:
(i) ¢p(r) <p.
(i) r<p <= ¢p(r) =r.
(iii) r Lp <= ¢p(r)=0.
(iv) pAq exists in P andp A q=p— dp(qgh).

Proof.

(i) By Theorems 4.9.(i) and 2.10.(ii), ¢p(r) < p° = p.

(ii) If » < p, then r = pr = rp, so ¢,(r) = (prp)° = r® = r. The converse
implication follows from (i).

(ili) By Lemma 5.3.(ii), [SA4], and Theorem 2.10.(i), p L r <= pr=0 <=
prp=0 < (prp)° =0 < ¢,(r) =0.
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(iv) Let ¢ == (¢p(q7))" = 1 — p(q-) € P. By (i), ¢p(¢) < p, whence
pC¢,(qt) and po,(gt) = ¢p(q). Therefore, by parts (i) and (iv) of Lemma 5.3,

pAt=pt=1p=p—¢(a") =pA(dp(g"))" € P, (1)
By (1), pAt L ¢,(¢t), whence by Theorem 5.4.(i), ¢,(p A t) L ¢t ie.
dp(pAt) <q. But, p At < p, whence by (ii), ¢p(p At) = p At, and we
have p At < q. Thus pAt < p,q. Suppose r € P and r < p,q. By (ii),
bp(r) =1 < q, so ¢p(r) L gF, and therefore r L ¢,(¢) by Theorem 5.4.(i);
hence, 1 < (¢,(¢"))* =t. But r < p; hence r < pAt by (1), and it follows that
pAt=pAgqg. [

THEOREM 5.6. P is an OML and, for all p,q € P, ¢,(q) =p A (p* V q).

Proof. Let p,q € P. Then by Lemma 5.5.(iv), p A q exists in P, so by De Mor-
gan duality, pV ¢ = (p* A ¢+)* also exists in P. Therefore, P is an OML. Also,
as p < pt Vg, we have p Vg =pt VvV (pA (ptVq)) by the orthomodular law;
hence, by Theorem 5.4.(ii) and parts (iii) and (ii) of Lemma 5.5,

dp(q) = dp(p™) V dp(q) = dp(pV Q)
=¢p(p-V(pA (P VQ))
= ¢p(p™) Vop(p A (P V) =pA(pH V). 0

Two elements p and ¢ of an orthomodular lattice are said to be compatible (or
to commute) iff p = (pAq) V (pAgqt) [14, p. 20]. By a standard argument (e.g.,
[7, Theorem 3.11]), if p,q € P, then p and ¢ are compatible in the foregoing
sense iff p Cq.

6. Synaptic versus GH-algebras

Every generalized Hermitian (GH) algebra G [9, Definition 2.1] is a synaptic
algebra. Indeed, [SA1] follows from [9, Theorem 4.2] and parts (ii), (iii), and
(iv) of [9, Definition 2.1] imply [SA2]-[SA4]. Also, [SA5] follows from [9, The-
orem 4.5], [9, Theorem 5.2] implies [SA6], and [SAT7] is a consequence of [10,
Lemma 4.1]. Finally, by [9, Lemma 6.6.(iii)], G satisfies [SA8]; hence G is a
synaptic algebra.

By [9, Definition 2.1.(vii)], a generalized Hermitian algebra G has the follow-
ing commutative Vigier'® property:

[CV] Every bounded ascending sequence g1 < g2 < --- of pairwise commuting
elements in G has a supremum g in G and g € CC({gn : n € N}).

10gee [6, Section 5] for the origin of the terminology
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Clearly, a synaptic algebra A is a GH-algebra iff it satisfies [CV]. The condi-
tion [CV] is quite strong!! (see [9, Section 4]), and the main impetus for the
formulation in Definition 1.1 is to replace [CV] by some of its algebraic con-
sequences [SA5], [SA6], and [SAT|, accompanied by the considerably weaker
condition [SAS].

As an indication of the extent to which synaptic algebras generalize GH-alge-
bras, we may consider the commutative case. The projections in a commutative
GH-algebra form a o-complete Boolean algebra; moreover, every o-complete
Boolean algebra can be realized as the (Boolean) lattice of projections in a
commutative GH-algebra [10, Theorem 5.7]. On the other hand, the projections
in a commutative synaptic algebra form a Boolean algebra, which need not be
o-complete; moreover, every Boolean algebra B can be realized as the (Boolean)
lattice of projections in a commutative synaptic algebra. Indeed, by Stone’s
theorem, B can be represented as the field .%# of compact open subsets of a totally
disconnected Hausdorff space X, and the projection lattice of the commutative
synaptic algebra A in Example 1.2 is isomorphic to B.

7. Invertible and regular elements

As we now show, the results in [10, Section 4] pertaining to invertible and
von Neumann regular elements of a GH-algebra G go through for our synaptic
algebra A, although we must be a little careful since the proof of [10, Lemma 4.1]
depends on the property [CV]. As usual, an element a € A is invertible iff there
exists a (necessarily unique) element a=' € A such that aa™! =ala=1. Ifa
is invertible, it is clear that a=! € C'C(a) and that a® = 1.

LEMMA 7.1. Let a € A. Then:
(i) If 0 < a and a is invertible, then 0 < a~ 1.

(ii) a is invertible iff |a| is invertible, and if a is invertible, then |a|~! = |a™1|.

Proof.

(i) Suppose 0 < a and a is invertible. AsaC(a~1)? and 0 < (a~!)?, Lemma 1.5
implies that 0 < a(a™')? =a~!.

(ii) Let s := sgn(a). By Theorem 3.6, s € CC(a), s*> = a°, sa = as = |al,
and s|a| = |a|s = a. Suppose a is invertible. As s € CC(a), we have s C a~!
and |a|(sa™1) = (sa~!)|a|] = 1; hence |a| is invertible and |a|~! = sa~!. Also,
52 =a° =1, and by (i), 0 < sa™!. But, (sa™!)? = s*(a™1)? = (a™1)?, whence

pgy instance, as a consequence of [CV], the orthomodular lattice of projections in a GH-al-
gebra is necessarily o-complete [9, Theorem 5.4].
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la|7t = sa™! = |sa~!| = |a~!|. Conversely, if |a| is invertible, it is clear that a
is invertible with =1 = s|a|!. O

THEOREM 7.2. Ifa € A, then a is invertible iff there exists 0 < € € R such that
e <lal.

Proof. Suppose first that a is invertible. Then, by Lemma 7.1, |al is invertible.
As 1 is an order unit, there exists n € N such that |a|~! < n, and since |a|
commutes with n—|a| !, Lemma 1.5 implies that 0 < (n—|a|~1)|al, i.e., 1 < nlal.
Consequently, with 0 < € := 1/n, we have € < |a.

Conversely, suppose 0 < € < |a|. Then 1 < e~ !|al; hence by [SA7], e !|a| is
invertible, and it follows that |a| is invertible with |a|™' = e~ (¢~ !]a|)~*. Thus
a is invertible by Lemma 7.1. |
DEFINITION 7.3. Let a € A.

(i) a is von Neumann regular iff there exists b € A such that ab,ba € A and

aba = a.

(ii) a is regular iff there exists 0 < € € R such that ea® < |a.

Obviously, 0 is both von Neumann regular and regular. The proof of the
following theorem is virtually identical’? to the proof of [10, Theorem 4.5].

THEOREM 7.4. If 0 # a € A, then the following conditions are mutually equiv-
alent:

(i) a is von Neumann regular.

(ii) There exists r € a®Aa® such that ar = ra = a°.

(iii) @ 4s invertible in the synaptic algebra a®Aa®.

(iv) a is reqular.
COROLLARY 7.5. If a € A, then a is invertible iff a is regular and a° = 1.

If 0 # a € A and a is regular, then the (necessarily unique) inverse of a in
a®Aa® (Theorem 7.4) is called the pseudo-inverse of a in A, and by definition,

the pseudo-inverse of 0 is 0. If a is regular, it is not difficult to show that the
pseudo-inverse of a belongs to CC(a).

THEOREM 7.6. If a € A, then a is reqular iff both a* and a™ are regular.
Proof. Let p:= (a™)° and ¢ := (a~)°. Then by Theorem 3.3, p,q € CC(a),
p+q=a®, pg=pa- =0,qp=qa” =0, pa=pat =a*,and qa=qa~ =a".
Suppose that a is regular. Then there exists 0 < € € R with ¢(p + ¢q) = ea® <
la| = a™ +a, s0 ep = ple(p+q)) < pla™ +a") = at = |aT|, whence a* is
regular. Likewise, e¢ < a~, so a~ is regular. Conversely, if both a™ and a~

12Note that a®Aa® is a synaptic algebra by Theorem 4.10.
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are regular, there exist 0 < a, 8 such that ap < a™ and B¢ < a™; hence with
€ := min{q, 8}, we have ea® = €(p + ¢) < a™ +a~ = |al, and it follows that a is
regular. O

COROLLARY 7.7. a € A is invertible iff a® = 1 and both a™ and a~ are regular.

8. Spectral resolution

In this section, we show that the synaptic algebra A is a so-called spectral
order-unit normed space; hence the results of [8] are at our disposal. In par-
ticular, every element in A both determines and is determined by a family of
projections — its spectral resolution.

As per [8, Definition 1.5 (i)], an element a € A is compatible with a projection
p € Piff a = J,(a)+ Ji—p(a). Thus, by Lemma 4.6.(i), C(p) is the set of
all elements of A that are compatible with p; hence, the notation used in [8,
Definition 1.5 (i) and ff.] is consistent with our notation in this article.

THEOREM 8.1. The family (Jp)pcp is a spectral compression base [8, Defini-
tion 1.7] for the order-unit space A.

Proof. To begin with, we have to show that P is a normal sub-effect algebra
of E ([5, Definition 1]). Of course, 0,1 € P,andp € P = 1—p=pt € P.
Also, if p,qg € P with p+¢q < 1, then p+ ¢ = pV ¢ € P by Lemma 5.3.(iii).
Therefore P is a sub-effect algebra of E. Suppose that d, e, f,d+e+ f € E with
pi=dt+ec€Pandgq:=d+f€P. Thene+g=d+e+ f<1l,s0e<1—gq,
and therefore by Theorem 2.4, ¢ = e(1 — q), i.e., eq = 0. Also, d < d+ f = g,
so dg = d by Theorem 2.4, and it follows that p¢g = (d + e)g = dg = d. By
symmetry, gp = d; hence by Lemma 5.3.(i), d = pA g € P, and it follows that P
is a normal sub-effect algebra of F.

Now let p,q,r € P with p+q+r < 1. Then pg = pr = qr =0, p+r =pVr € P
and g +7r =qVr € P, whence, for all a € A,

Jptr(Jgir(a)) = (p+7)(g+7)alg +r)(p+7) = rar = Jp(a),
and it follows that (J,)pcp is a compression base for A ([5, Definition 2]).

If e € E, then by Theorem 2.10.(vii), €° is the smallest projection p such that
e < p; hence the compression base (J,)pcp has the projection cover property
([8, Definition 1.4]).

Let a € A and let p := (a™)°. Then by parts (i), (iii), and (vi) of Theorem
3.3, we have C(a) C C(p), Jp(a) = pap = pa = at > 0, and J1_,(a) =
(1-p)a(l—p)=(1—-pla=a—pa=a—at =—a~ <0. Thus, the compression
base (Jp)pep has the comparability property ([8, Definition 1.6]), and therefore
(Jp)pep is a spectral compression base for A. a
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If a € A, it is clear that, for all p € P,
p<l—a’ <= a’p=0<= ap=pa=0 < (aEC(p) & Jp(a):pap:O).
Therefore, as per [8, Theorem 2.1 and ff.], the mapping ': A — P defined by
a' :=1—a° for all a € A is effective as the Rickart mapping on A. We note
that, for p € P, we have p' =1 — p = p*.

Let a,b € A. In [8] the notation b € C'PC(a) means that, for all p € P,
a € Clp) = b e C(p). Thus, b € CPC(a) < C(a)NP C C(b);
hence, CC(a) € CPC(a). For instance, by [8, Lemmas 2.1.(vi), 2.4.(iv)],
a®,lal,a™ € CPC(a), but for our synaptic algebra A, we have the (possibly)
stronger conditions a°, |a|, a™ € CC(a).

In view of the remarks above, we can translate the results in [8] into our
present formalism by replacing a’ by 1 — a°, a” by a°, and p’ by pt =1 —p
for all a € A and all p € P. Moreover, if a C p, we can replace J,(a) by pa
(or by ap).

DEFINITION 8.2. Let ¢ € A and A € R. Then:

(i) The spectral lower and upper bounds L and U for a are defined by L :=

supfA €R: A<a}and U:=inf{\ e R: a < \}.
(i) The family of projections (px)xer defined by py =1 — ((a — A\)*)° is
called the spectral resolution of a.

(iii) The family of projections (dx)rer defined by dy := 1—(a—\)° is called the
family of eigenprojections of a. If dy # 0, then A is called an eigenvalue
of a.

STANDING ASSUMPTIONS 8.3. In what follows: a € A; L and U are the spectral
bounds for a; (px)aer is the spectral resolution of a; and (dy)xer is the family
of eigenprojections for a.

By [8, Theorem 3.1], —oo < L < U < o0, ||a|| = max{|L|,|U|}, and L < a
< U. The following theorem is a consequence of [8, Theorems 3.3, 3.5, and 3.6].
THEOREM 8.4. For all A\, u € R:
(i) pr, dx € CC(a); hence pxCpy, px C d,, and dy C d,,.
(i) pala —A) <0< (1 —pa)(a—A).
(i) A<pu = pr <pu and p, —px =pu AN (1 —Dpy).
(iv) A<p = dy<pr<1—-d, = dyLd,.
(V) p2U <= p,=1.
(vi) A< L = px=0,and L <A = 0 < py.
(vii) If « € R, then po = N{p,: a<p e R}
(viii) If « € R, then po —do = \/{pr: a > X € R}.
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By [8, Theorem 3.4, Remark 3.1, and Corollary 3.1], we have the following
theorem and corollary.

THEOREM 8.5. Suppose that Mo, A\1,..., A, ER with \g < L < A < --- < Ay
= U, and let v; € R with A\i_1 < v < A\ fori = 1,2,...,n. Define u; :=
Dx; — Py fori=1,2,....n, and let € := max{\;, — \i—1 : ¢ = 1,2,...,n}.
Then:
n
Ug, Uz, . .., Uy € PNCC(a), Zuz =1, and

i=1

<e.

n
a— E Yits
i=1

According to Theorem 8.5, a can be written as a norm-convergent integral

U
a= [ Xdpy, of Riemann-Stieltjes type; hence a not only determines, but it is
L—0
determined by its spectral resolution.

COROLLARY 8.6. There erists an ascending sequence a1 < ag < --- in CC(a)
such that each a, is a finite linear combination of projections in the family
(PA)rer and lim a, = a.

n—oo

DEFINITION 8.7. A real number p belongs to the resolvent set of a iff there is
an open interval I in R with p € I such that py = p, for all A € I. The spectrum
of a, in symbols spec(a), is defined to be the complement in R of the resolvent
set of a.

As is proved in [8], spec(a) has all of the expected basic properties. For
instance, by [8, Theorem 4.3], spec(a) is a closed nonempty subset of the closed
interval [L,U] C R, L = inf(spec(a)) € spec(a), U = sup(spec(a)) € spec(a),
and [a| = sup{|a] : a € spec(a)}. By [8, Theorem 4.4], a € AT <
spec(a) C RT, and by [8, Corollary 5.1], a € P <= spec(a) C {0,1}. As a
consequence of [8, Theorem 4.2], every isolated point of spec(a) is an eigenvalue
of a, and every eigenvalue of a belongs to spec(a).

DEFINITION 8.8. An element in A is simple iff it is a finite linear combination
of pairwise commuting projections.

The following result is a consequence of [8, Theorems 5.2 and 5.3].

THEOREM 8.9. The simple elements of A are precisely those with finite spec-
trum. Let a be a simple element of A. Then a can be written uniquely as

n n
a= Z a;u;, where o < ag < -+ <y, 0# u; € P, and Y u; = 1. Moreover,

1=1 i=1
n
a is regular, |a| = Y |oglug, |la|| = max{|as| : i =1,2,...,n}, a® = 3 w,
i=1 a;#0
and u; = dq, fori=1,2,...,n.
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As a consequence of Corollary 8.6, each element a € A is the norm limit
(hence by Theorem 4.7.(ii) also the supremum) of an ascending sequence of
pairwise commuting simple elements, and it follows that the simple elements in
A (hence by Theorem 8.9, also the regular elements in A) are norm-dense in A.

THEOREM 8.10. Ifb€ A, thenbC a iff bC py for all A € R.

Proof. For A\ € R, we have py € CC(a); hence b C' a implies that b C py.
Conversely, suppose that b C py for all A € R and let (a,)nen be the ascending
sequence in Corollary 8.6. As a,, € CC(a) for all n € N, the elements of
the sequence (ay)nen commute with each other. As each a, is a finite linear

combination of projections py, we have a,, € C(b) for all n € N, and it follows
from [SAS8] that a € C(b). O

THEOREM 8.11. C(a) is norm-closed in A and, with the partial order inher-
ited from A, C(a) is a synaptic algebra with unit 1 and enveloping algebra R.
Let b,c € C(a). Then: boc, b°, |b], bT, b~, Jp(c), dp(c) € Cla); 0 < b =
bl/2 € C(A); and the spectral resolution and family of eigenprojections of b are
the same whether calculated in A or in C(a).

Proof. Suppose that (b,)nen is a sequence in C(a) and b, — b € A. Then
by Theorem 8.10, b, € C(py) for all n € N and all A € R, and it follows
from Lemma 4.6.(ii) that b € C(py) for all A € R. Therefore, b € C(a) by
Theorem 8.10, whence C(a) is norm-closed in A. The remainder of the proof is
omitted as it is completely straightforward O
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