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ABSTRACT. A synaptic algebra is both a special Jordan algebra and a spectral
order-unit normed space satisfying certain natural conditions suggested by the
partially ordered Jordan algebra of bounded Hermitian operators on a Hilbert
space. The adjective “synaptic”, borrowed from biology, is meant to suggest that
such an algebra coherently “ties together” the notions of a Jordan algebra, a
spectral order-unit normed space, a convex effect algebra, and an orthomodular
lattice.
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1. Introduction

Our purpose in this article is introduce and study a class of partially ordered
algebraic structures, which we call synaptic algebras, that are simultaneously
spectral order-unit normed spaces [8] and special Jordan algebras, and that also
incorporate convex effect algebras [12] and orthomodular lattices [3, 14]. We have
borrowed from biology the adjective ‘synaptic’, which is derived from the Greek
word ‘sunaptein’, meaning to join together. A synaptic algebra (Definition 1.1
below) is required to satisfy certain natural conditions suggested by an important
spacial case, namely the partially ordered Jordan algebra of bounded Hermitian
operators on a Hilbert space.

The generalized Hermitian (GH) algebras introduced and studied by Sylvia
Pulmannové and the author in [9, 10] are synaptic algebras that satisfy a rather
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strong additional condition on bounded ascending sequences of pairwise commut-
ing elements — see Section 6 below for the details. Example 1.2 below exhibits
a commutative synaptic algebra which, in general, fails to be a GH-algebra,
showing that synaptic algebras are proper generalizations of GH-algebras. In
the sequel, we use the symbols R and N for the ordered field of real numbers and
the set of positive integers, respectively. Also, we use ‘iff” as an abbreviation for
‘if and only if’, and the symbol :=’ means ‘equals by definition’.

DEFINITION 1.1. Let R be a linear associative algebra with unity element 1
over R and let A be a (real) vector subspace of R. If a,b € A and B C A, we
write a C' b iff @ and b commute (i.e. ab = ba)' and we define
Cla) ={beA: aCb}, C(B):= m C(b), and CC(a):=C(C(a)).
beB
The vector space A is a synaptic algebra with enveloping algebra R iff the fol-
lowing conditions are satisfied:

SA1l. A is a partially ordered archimedean real vector space with positive cone
At ={a€e A: 0<a},1 € A" is an order unit in A, and | - || is the
corresponding order-unit norm.>

SA2. If a € A then a® € AT.

SA3. If a,b € AT, then aba € AT.

SA4. Ifa € Aand b€ AT, then aba =0 = ab = ba = 0.
SA5. If a € A™, there exists b € AT N CC(a) such that b* = a.

SA6. If a € A, there exists p € A such that p = p? and,
forallbe A, ab=0 < pb=0.

SAT. If 1 <a € A, there exists b € A such that ab = ba = 1.

SA8. If a,b € A, a1 < as < ag < --- is an ascending sequence of pairwise
commuting elements of C'(b) and lim ||a — a,|| =0, then a € C(b).
n—oo

We define P := {p € A: p = p?}. Elements p € P are called projections. We
define the unit interval Ein Aby E:={e€ A: 0 <e<1}. Elementse € E
are called effects.®

If R is a von Neumann algebra, then the real vector space A of all self-adjoint
elements in R is a synaptic algebra. More generally, the self-adjoint elements in
a Rickart C*-algebra ([13, §3]), and in particular in an AW*-algebra ([15]), form
a synaptic algebra. Additional examples of synaptic algebras are: JW-algebras

13We understand that a product of elements of A is the product as calculated in R, which may
or may not belong to A.

2See Definition 1.6 below.

3Actually, E is a so-called convez effect algebra([12]).
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([17]), AJW-algebras ([17, §20]), JB-algebras ([2]), and the ordered special Jor-
dan algebras studied by Sarymsakov, et al. [16]. All the foregoing examples are
norm complete, but the commutative synaptic algebra in the following example
need not be norm complete.

Example 1.2. Let % be a field of subsets of a nonempty set X, let A be the
commutative and associative real linear algebra, with pointwise operations, of
all functions f: X — R such that

(i) NeR = f71(\) €.Z and
(i) {f(z): = € X} is finite.

Then, with the pointwise partial order, A is a synaptic algebra with A as its
own enveloping algebra. The projections in A are the characteristic set functions
(indicator functions) of sets in ..

STANDING ASSUMPTIONS 1.3. In the sequel, we assume that A is a synaptic
algebra with enveloping algebra® R, that F is the set of effects in A, and that P
is the set of projections in A. We understand that both E and P are partially
ordered by the restrictions of the partial order < on A. To avoid triviality, we
assume that 1 # 0. As is customary, we shall identify each real number A € R
with the element A1 € A, so that R is a one-dimensional linear subspace of A. If
nisoneof 1,2,...,8, then [SAn| will always refer to the corresponding condition
in Definition 1.1.

By [SA2], a € A = a® € A, hence A is organized into a special Jordan
algebra under the Jordan product aob:= 1 (ab+ba) = }[(a+b)?—a*—b*] € A
for all a,b € A. Clearly, loa=aol=a, ie., Ais a unital Jordan algebra.

Remarks 1.4. Let a,b,c € A. Then a Cb = ab =ba =aob € A. As
a’> € A and a C a?, it follows that a® = a o a? € A, and by induction, a" € A
for all n € N. Consequently, A is closed under the formation of real polynomials
in a. Let ¢ := 2(aob). Then aba = aoc—a?ob € A, hence aba € A. Thus,
acb + bca = (a + b)c(a + b) — aca — beb € A.

LEMMA 1.5. Ifa,be€ AT and a Cb, then ab =ba € A*.

Proof. Assume that a,b € AT and a C' b. By Remarks 1.4, ab = ba € A.
By [SA5], there exist z € AT N CC(a) and y € AT N CC(b) such that a = z?
and b = y2. As x € CC(a) and a C b, we have x C b; hence, as y € CC(b),
it follows that x C'y. Therefore, zy = yx € A by Remarks 1.4, and we have
(ry)? = 2%y? = ab. Consequently, ab € AT by [SA2]. d

4We shall not be concerned with the detailed structure of the enveloping algebra R — we
regard R merely as an arena in which to study A, E, and P.
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By [SA1], A is an order-unit normed space according to the following definition
(adapted to our present notation).

DEFINITION 1.6. An order-unit normed space [1, pp. 67-69] is a partially or-
dered real vector space A with a distinguished element 1 € A, called the unit,
such that:

(i) Ais archimedean, i.e., if a,b € A and na < b for all n € N, then —a € A™.

(i) 0 < 1 and 1 is an order unit® in A, i.e., for every a € A, there exists n € N
such that a < n.b

The order-unit norm || - || on A is defined by
(iii) |laf] :==inf{fA€R: 0 < Xand — X <a <A}

The order-unit norm || - || is a bona fide norm on A, and it is related to the
partial-order structure of A by the following properties,” which we shall use
routinely in the sequel: For all a,b € A,

—llal]| <a <la|l, and if —b<a <b, then |al < b].

If (an)nen is a sequence in A and a € A, the notation lim a,, = a, or simply
n—oo

an — a, will mean that a is the limit of (an)nen in the norm topology, i.e., that
lim ||a —a,| =0.
n—oo

LEmMMA 1.7. Leta, b€ A and 0 < A € R. Then:
(i) “A<a< X < a? <)\
(i) fla®(| = [|all>.
(iii) 0<a,b = [la— bl < max{llall, [|b]|}.
(iv) llacdl| < lallfl]-
(v) IfaCb, then |[ab]| < [[al|[|b].

Proof If —A <a < A, then0 < A—a, A +a, and as (A—a)C(A+a), Lemma 1.5
implies that 0 < (A — a)(A + a) = A% — a®. Conversely, suppose that a? < \2.
Then 0 < (A — a)? by [SA2], whence 0 < (A\? — a?) + (A — a)? = 2(A? — Xa) and
since 0 < ), it follows that a < \. As a? < A2, we also have (—a)? < A2, whence
—a <\, ie., =\ < a, proving (i).

Part (ii) follows from (i).

To prove (iii), we can assume that ||a| < ||b]]. As 0 < b, we have a < ||a|| <
6]l < ||b]| + b, whence a — b < ||b]|. Also, as 0 < a, we have b < ||b]| < ||b]| + a,
whence b —a < ||b]|, and therefore —||b|| < a —b < ||b]|. Consequently, ||a —b|| <
[Ib]] = max{||all,||b]|}. To prove (iv), it will be sufficient by normalization to

5Some authors use the terminology “strong order unit”.

6Recall that we are identifying n € N C R with nl.
"See [1, Proposition I1.1.2] and [11, Proposition 7.12 (c)]
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prove that |la]| = ||| =1 = |laob|| < 1. Thus, we assume ||a| = ||b]| = 1, so
that ||a £ b|| < 2, and therefore by (ii), ||(a + b)?|| < 4. Consequently, by (iii),

laob] = lita+8)? ~ (@~ <, max{|l(a+ 7] (a— )} <1

If a C'b, then ab = a o b, so (v) follows immediately from (iv). O

2. Square roots, projections, and carriers

Remarks 2.1. Let a,b € A. Then:
(i) By [SA4] with b =1, we have a® =0 = a = 0.
(ii) f 0 <a,band a+b =0, then 0 <a= —b <0, whence a =b=0.

THEOREM 2.2. Let 0 < a € A. Then there exists a unique r € A such that
0 <r and r? = a; moreover, r € CC(a).

Proof. Suppose that 0 < a € A. By [SA5|, there exists b € CC(a) such that
0 < bandb? =a. Asa € C(a), we have a C b. Suppose also that » € A with
0 <7, 72 = a. Obviously, r C a, whence b C r. It will be sufficient to prove that
r=b.

By [SA5], there exists s € CC(b) such that 0 < s and s> = b. As b,r € C(b),
we have s C'b and s C' r. By [SA5] again, there exists t € CC(r) such that 0 <t
and t? =r. As b,r € C(r), we have t C'b and ¢t C'r.

Since s C'b and sC'r, it follows that sC (b—7), hence s(b—r) = so(b—r) € A.
Likewise, since ¢t C b and t C r, we have t(b —r) € A. Moreover, as b*> = r% = q,
it follows that

(s(b—=r)) 2+ (t(b—1))? = (s> +t)(b—7)? = (b+7)(b—71)* = (B* —rH)(b—7r) = 0.
But 0 < (s(b—r))? and 0 < (¢(b — r))? by [SA2], whence (s(b — r))? =
(t(b—1))?> =0, s0 s(b—7r) =t(b—17) =0 by Remarks 2.1.

As s(b—7) =0, it follows that b(b —r) = s2(b—r) = 0. Likewise, r(b— 1) =
t2(b—r) = 0, whence (b—17)? = b(b—r) —r(b—7) =0, and by Remarks 2.1.(i),
r=b. O

If 0 < a € A, then of course, the unique element r in Theorem 2.2 is called

the square root of a, and in what follows we denote it in the usual way as a'/?.

Remarks 2.3. Let p € P. Then, as p = p?, [SA2] implies that 0 < p. Also,
(1-p)2=1-2p+p?>=1-p,s01—pc P, and therefore 0 <1 —p, ie,p<1.
Consequently, 0 < p < 1, and it follows that P C F.
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THEOREM 2.4. Let e € E and p € P. Then the following conditions are mutu-
ally equivalent:

(i) e <p.
(ii) e = ep = pe.
(iii) e = pep.
(iv) e =ep.
(v) e =pe.
Proof.

(i) = (ii). Assume that e < p and let d := p —e. Then 0 < e,d,1 — p,
e+ d=p, and

(1=ple(l —p)+ (1 =p)d(l—p)=(1-p)p(l—p)=0.

By [SA3],0 < (1—p)e(1—p), (1—p)d(1—p), and it follows from Remarks 2.1.(ii)
that (1—p)e(1—p) = (1—p)d(1—p) = 0. Therefore, by [SA4], (1—p)e = e(1—p)
=0, i.e., e = pe = ep.

(ii) = (iii) = (iv). Follows from p = p.

(iv) <= (v). By [SAdl,e=ep = e(l—p)=0 = (1 —ple(1—p) =0
= (1—p)e =0 = e = pe, and the converse implication follows by symmetry.

(v) = (i). Assume (v). Since (iv) <= (v), we have pe = ep = e, so
(1—e)p=p(1l—¢€) =p—e, whence 0 < p — e by Lemma 1.5, and therefore
e <p. O

LEMMA 2.5. Lete € E. Then:
(1) e2e FEwithd<e?<e.
(i) 2e —e? € E.
(iii) e—e? € Ewithe —e? <e, 1 —e.

Proof. By[SA2],0<e? andaseC(1—e)with 0 <e,1—e¢, Lemma 1.5 implies
that 0 < e(l — ), whence 0 < e? < e < 1, proving (i). Also, 0 < (1 —e)?
1—2e+e? soby (i), 0 < e+ (e—e?) =2e—e? <1, proving (ii). Part (i
follows from (i) and (ii).

mRS]
N—

Obviously, E is a convex set, and by Remarks 2.3, P C E. The following
theorem characterizes, in various ways, those effects p € E that are projections.

THEOREM 2.6. Ifp € E, then the following conditions are mutually equivalent:

(i) pe P.
(ii) f AR, 0< A<, ande € F, then e <p < e <p.
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(iii) p is an extreme point of the conver set E.
(iv) Ife,fie+ f € E, thene, f <p = e+ [ <p.
(v) Ife€e E ande <p,1 —p, thene=0.

Proof.

(i) = (ii). Suppose p € P,e€ E, and 0 < A < 1. Then 0 < Xe <e <1, so
Ae € E. Therefore, by Theorem 2.4, de < p <= dep=Ae < ep=e <
e <p.

(ii) = (iii) Assume (ii) and suppose that p =Xe + (1 —\)f with 0 < A < 1
and e, f € E. Then Ae < p, whence ¢ < p = Ae+ (1 — \) f, therefore (1 — N)e <
(1 —X)f, and it follows that e < f. Similarly, f <e,soe= f =p.

(iii) = (i) Assume (iii). By parts (i) and (ii) of Lemma 2.5, p?, 2p—p? € E,
and since p = Jp* + 1(2p — p?), (iii) implies that p = p? = 2p — p?, whence
peP.

(i) = (iv) Assume that p € P, e,f,e+ f € E, and e, f < p. Then by
Theorem 2.4, e = pep and f = pfp. Ase+ f € E, we have 0 < 1 — (e + f),
whence by [SA3], 0 < p(1 —e— f)p, i.e., e+ f = pep+ pfp < p? =p.

(iv) = (v) Assume (iv) and suppose that e € E with e < p,1 —p. Then
e,p € E,0<e+p<1, and e,p < p, whence e + p < p by (iv), and therefore
e<0.But0<e, soe=0.

(v) = (i) Assume (v). By Lemma 2.5.(iii), 0 < p — p?> < p,1 — p, whence
p=p* by (v). O

THEOREM 2.7. Let a € A. Then there exists a unique projection p € P such
that, for allb € A, ab=0 < pb=0.

Proof. By [SA6], there exists p € P such that, for all b € A, ab = 0 <=
pb=10. Suppose ¢ € P and, for all b € A, ab = 0 <= g¢gb = 0. Putting
b =1—p, we find that a(1 — p) = 0, whence ¢(1 — p) = 0, i.e., ¢ = gp, and
therefore ¢ < p by Theorem 2.4. By symmetry, p < g, so p = ¢, proving the
uniqueness of p. O

DEFINITION 2.8. If a € A, then the unique projection p in Theorem 2.7 is called
the carrier projection of (or for) a and is denoted by a°. Thus, a® € P and, for
allbe A, ab=0 < a°b=0.
LEMMA 2.9. Leta,b€ A andp € P. Then:

(i) pb=0 < bp=0.

(ii) pa=a <= ap=a.

(iii) aa® = a®a = a.

(iv) ab=0 <= ba =0.
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Proof. By [SA4] and the fact that 0 < p, we have pb =0 = bpb=0 =
bp = 0, whence pb =0 = bp = 0. A similar argument yields the converse,
proving (i). By (i), pa =a <= (1-p)a=0 < a(l —p) =0 < ap = a,
proving (ii). As a° € P, we have a°(1 —a®) =0, so a(l —a®) =0, i.e., aa® = a,
whence a°a = a by (ii), proving (iii). To prove (iv), assume that ab = 0. Then
a®b = 0, so ba® = 0 by (i). Also, a = a®a by (iii), whereupon ba = baa = 0.
Thus, ab =0 = ba = 0, and the converse follows by symmetry. O

THEOREM 2.10. Let a,b € A. Then:
(i) a=0 < a®°=0.
(i) a € P <= a=a°.
(iii) a® is the smallest projection p € P such that a = ap.
(iv) Ife € E, then e° is the smallest projection p € P such that e < p.

(v) ab=0 <= al®° =0 < a°b° =0.

(vi) a® € CC(a).

(vii) Ifn € N, then (a™)° = a°.
(viii) If 0 < a < b, then a® < b°.
Proof.

(i) and (ii) are obvious from the definition of a°.

(iii) We have aa® = a by Lemma 2.9.(iii). Suppose that p € P and a = ap.
Then a(1 — p) = 0, whence a°(1 — p) = 0, so a® = a°p, and therefore a° < p by
Theorem 2.4.

(iv) Part (iv) is a consequence of (iii) and Theorem 2.4.

(v) By Lemma 2.9.(iv),

ab=0 <= ba=0 < Y’a=0 <= al®° =0 < a°° =0.
(vi) Suppose that ¢ € C(a) and let d := (1 — a®)ca® 4+ a®c(1 — a°). Thus,
d € A (see Remarks 1.4), and as aa® = a, we have
ad = a(l —a®)ca® + aa’c(l —a®) =0+ ac(l —a®) = ca(l —a®) =0,
and therefore
0=a’d=04a’(1—a’) =ac— a°ca®, ie., a°c=aca’.
Also, as a®°d = 0, Lemma 2.9 implies that 0 = da® = (1—a°)ca®, i.e., ca® = a°ca®.
Therefore ca® = a°ca® = a°c, so ¢ € C(a®).

(vil) Let n € N. As aa® = a, we have a"a® = a”, whence (a")° < a°
by (iii). We have to prove that a® < (a™)°. Put ¢ := 1 — (a™)°. By (vi),
C(a™) C C((a™)°), whence a C q. Evidently, a"q = 0, so there is a smallest

positive integer k such that afq = 0. If k is even, then a*/2¢a*/?2 = 0, so
a*/2q = 0 by [SA4], contradicting the minimality of k. Therefore, k is odd

638

Unauthenticated
Download Date | 2/3/17 9:27 PM



SYNAPTIC ALGEBRAS

and a**1q = 0, whence a**1)/2¢a(*+1)/2 = (0, s0 a**+1)/2¢ = 0 by [SA4] again,
whereupon k < (k +1)/2, i.e., k = 1. Therefore, ag = 0, whence a = a(a™)°,
and again by (iii), a® < (a™)°.

(viii) Suppose that 0 < a < b. The case b = 0 is trivial, so we assume that
b#0. Let X\ :=||b]|7, e :== Aa, and f := A\b. Clearly, e, f € E, e < f, €° = a°,
and f°=10° By (iv), e < f < f° € P, whence e° < f°, i.e., a° < b°. d

3. Absolute value and polar decomposition

If a € A, then by [SA2], 0 < a?, so we can formulate the following definition.

DEFINITION 3.1. If a € A, then the absolute value of a is defined and denoted

by |a| := (a?)}/2. Also we define a* := 1(|a| + a) and a~ := }(|a| — a).
Remarks 3.2. Let a € A. Obviously, 0 < |a| = | — a] and |a|? = a®. Also,
C(a) C C(a?) C C(Ja]), and therefore |a|,a™,a~ € CC(a). Moreover, a =
at —a ,lal=at+a",ata” =a"at =0,and a= = (—a)™.

THEOREM 3.3. Leta € G, p:= (a™)°, and q := (a™)°. Then:

(i) p,q€CCla) (ii) pClal and ¢Clal
(iii) pa=ap=a™. (iv) ga=aq=—a".
(v) 0<plal=lalp=a". (vi) 0<gla]=lalg=a".
(vil) pg=gqp=0. (viii) p+q=a°.
Proof.

(i) As C(a) C C(a™) and C(a™) C C((a™)°), we have C(a) C C(p). Likewise,
as a” = (—a)T and C(a) = C(—a), we have C(a) C C(q).

(ii) As |a| € C(a), (ii) follows from (i).

(iii) By (i), pa = ap. Also, a™ = (a™)°at = pa™, and since ata™ = 0, it
follows that pa~ = 0, whence pa = p(a™ —a™) = a™.

(iv) By (iii), —ga = g(—a) = (~a)* =a".

(v) By (ii), p C |a|, and as in the proof of (iii), pla| = p(a®™ +a~) = a™. As
0 < pand 0 < |a|, we have 0 < p|a|] by Lemma 1.5.

(vi) The proof of (vi) is similar to the proof of (v).

(vii) As aTa™ = 0, we have pa~ = 0, whence pg = 0.

(viii) By (vii), (p+q)®> = p* +¢*> = p+¢q, so p+q € P. By (iii) and
(iv), a(p+ q) = a™ —a~ = a, whence a® < p + ¢ by Theorem 2.10.(iii). Let
r:=1-a° Thenr € Pand 0 = ar = atr—a~r,ie., aT™r = a~r. Consequently,
atr =patr =pa~r = pga~r =0 by (vii), and it follows that pr = 0. Likewise,
gr =0, so (p+ q)r = 0, and therefore (p + q)a® = (p+q)(1 —7) =p+gq, ie.,
P+ q < a® by Theorem 2.4; hence p + g = a°. (]
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COROLLARY 3.4. If 0<a,bc€ A and a Cb, then a®> < b* < a <b.

Proof. Assume the hypotheses and suppose that a? < b?. As 0 < (b—a)?, we
have

0<(b—a)?+0b*—a®=20b*—ab), whence 0 < (b—a)b. (1)
Also, by parts (vii), (viii), and (iii) of Theorem 2.10,
a® = (a*)° < (b*)° = 1°, whence ab® = a. (2)

Let ¢ := (b—a)" and d := (b — a)~. Then by Remarks 3.2 and parts (v) and
(vi) of Theorem 3.3, b € C(b—a) C C(c) N C(d), and we have
bCec, bCd, cCd, 0<¢c, 0<d, dc=0, andb—a =c—d. (3)
By (1) and (3),
0<(b—a)b=(c—d)b=cb—db. (4)
Since d C (¢b — db) and 0 < d, it follows from (4), (3), and Lemma 1.5 that
0 < d(cb — db) = —d?b, i.e., d*b < 0. Likewise, as 0 < d?, 0 < b, and b C d?, we
also have 0 < d?b; hence d?b = 0, and consequently
d°b = (d*)°b=0, so db=0, whence db® = 0. (5)
Asce C(b) CC(b°), 0 < ¢, and 0 < b°, we have 0 < ¢b® by Lemma 1.5, whence
by (5), (3), and (2),
0<cb®=(c—d)b° = (b—a)b® =bb° —ab® = b — a.
Conversely, suppose that a < b, i.e., 0 <b—a. As aCb, we have a C (b—a), and

it follows from Lemma 1.5 that 0 < a(b — a) = ab — a?, i.e., a® < ab. Similarly,
0 < (b—a)b=b?— ab, whence ab < b2, and it follows that a? < b2. O

DEFINITION 3.5. If a € A, then the signum of a is defined and denoted by
sgn(a) := (a*)® — (a7)°.
THEOREM 3.6. Let a € A. Then:

(i) sgn(a) € CC(a).

(i) sgn(a)? =
(iti) sgn(a)a = asgn( ) = lal.
(iv) sgn(a)la| = |a|sgna = a.

Proof. By Theorem 3.3.(i), C(a) € C((a™)°) N C((a™)°), from which (i) fol-
lows. Part (ii) follows from parts (vii) and (viii) of Theorem 3.3, and parts (iii)
and (iv) are consequences of parts (iii) and (iv) of Theorem 3.3. d

The formula a = sgn(a)|a|] = |a|sgn(a) in Theorem 3.6 is called the polar
decomposition of a.
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COROLLARY 3.7. Let a,b € A. Then:
(i) ab=0 <= |a||b] = 0.
(ii) |al® = a°.
Proof. We have ab = 0 = |a||b] = sgn(a)absgn(b) = 0, and conversely,

la||b| =0 = ab = sgn(a)|al|b| sgn(b) = 0, proving (i). Arguing as above, we
find that |a|b =0 <= ab =0, whence |a|® = a°, proving (ii). O

4. Quadratic, compression, and Sasaki mappings

DEFINITION 4.1. If a € A, the mapping J,: A — A defined by J,(b) := aba
for all b € A is called the quadratic mapping determined by a. If p € P, the
quadratic mapping J,, is called the compression on A with focus p.

THEOREM 4.2. Ifa € A, then the quadratic mapping J,: — A is both linear
and order preserving.

Proof. Obviously, J, is linear. Suppose that 0 < h € A. By [SA3], 0 < |a|h|al,
and we define k := (|a|h|a|)*/2. Thus, k2|a|® = |a|h|al|al® = |a|h|a| = k2, so by
(ii) and parts (vii) and (iii) of Theorem 2.10,

k° = (k*)° < |a|® = a°, whence ka® = k. (1)
Let w := sgn(a). Then by parts (ii) and (iv) of Theorem 3.6, w? = a° and
a = w|a| = |aw; hence by (1)

0 < (wkw)? = whkw?kw = wka®kw = wk*w = wla|hlajw = aha = J,(h).

Suppose b,c € A with b < ¢, and put h := ¢ —b. Then 0 < h, therefore
0 < Ju(h) = Ju(c) — Ju(b), whence J,(b) < J,(c), i.e., J, is order preserving. [

Remark 4.3. Condition [SA3] requires that a,b € AT = aba € A™; however,
by Theorem 4.2, we now have the stronger result b € At = aba € AT for all
a € A.

LEMMA 4.4. Leta, b€ A andp € P. Then:
(@) [1a®)] < lla®[[l1Bll = lla/*[[t]]-
(ii) Jo: A — A is norm continuous.

(iii) Ifp # 0, then ||p|| = 1.
(i) [[Jp(a)[l < llall-
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Proof. As —||b|| <b < |[b]|, we have

=lIblla* = a(~[bl)a < aba < aljblla = [|blla*,

whence [[aba|| < [[(]|bl|a®)|| = [|a®|[[|bl|. By Lemma 1.7.(ii), [|a®|| = [|a|[®, proving
(i), and (ii) follows from (i). Also by Lemma 1.7.(ii), ||p||*> = ||p?|| = ||p||, from
which (iii) follows, and (iv) is a consequence of (i) and (iii). O

Let p € P and e € E. By Theorem 4.2, J, is linear and order preserving.
Clearly, J,(1) =p € P C E. By Theorem 2.4, e <p = J,(e) = e. Also, if
Jp(e) = 0, then pep = 0, whence pe = ep = 0, so e < 1 — p. Conversely, as a
consequence of [4, Corollary 4.6], compressions on A are characterized as in the
following theorem.

THEOREM 4.5. Let J: A — A be a linear and order-preserving mapping such
that J(1) < 1 and, for everye € E, e < J(1) = J(e) =e. Thenp:= J(1) € P
and J = Jp.

LEMMA 4.6. Leta € A and p € P. Then:
(i) a € C(p) = a=Jp(a)+ Ji_p(a).
(ii) C(p) is norm closed in A.
Proof. If aCp, it is clear that a = pap+(1—p)a(l—p). Conversely, if a = pap+

(1 —p)a(l —p) then pa = pap = ap, proving (i). Define the mapping ¢,: A — A
by ¢p(a) := Jp(a) + Ji—p(a). By Lemma 4.4.(ii), ¢, is norm continuous, and by

(i), C(p) is its set of fixed points, proving (ii). O
THEOREM 4.7. Let (an)nen be a sequence in A and suppose that lim a, = a € A.
n—oo
Then:
(i) If ap, < b€ A foralln € N, than a <b.
(i) If a1 < ag < ---, then a is the supremum (least upper bound) of (an)nen

mn A.

(iii) The positive cone AT is norm closed in A.

Proof. By hypothesis, for each m € N, there exists IV, € N such that, for all
n €N,

Np<n = ap,—a<l|a,—a|]| <1/m = a, <a+1/m. (1)

(i) Assume the hypothesis of (i). Then, for all m € N, a —b < a —ap,,. Let
p:=((a—b)")° € CC(a—0b). Then, (a—b)" =pla—b) =pla—b)p = J,(a—Db),
so by Lemma 4.4.(iv) and (1), for every m € N,

(a=b)" =Jyla—b) < Jp(a—an,) < [Jp(a—an,)| < lla—an, || < 1/m,
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whence m(a—b)* <1, and since A is archimedean, it follows that (a —b)* < 0.
But 0 < (a—0b)", so (a—b)* =0, and consequently, a —b = —(a—b)~ <0, i.e.,
a <b.

(ii) By (1), for each m € N,

ap<ax<---<ay, <a+1/m;

hence a, < a + 1/m for all n € N. Therefore, for each n € N, we have
m(a, —a) <1 for all m € N, and since A is archimedean, it follows that
anp —a <0, ie, a, < a. Ia, <be Aforall neN, then by (i), a < b;
hence a is the least upper bound of (a,)nen-

(iii) Let (cn)nen be a sequence in A' and suppose that ¢, — c¢. Then
—cp — —¢, and as —c, < 0foralln € N, (i) implies that —c < 0,i.e.,c€ AT. [

By combining the quadratic mapping .J, with the carrier, we obtain the Sasaki
mapping on A as per the following definition.

DEFINITION 4.8. For each a € A, the Sasaki mapping® ¢o: A — P is defined
by ¢4(b) := (J4(b))° = (aba)® for all b € B.

THEOREM 4.9. Let a,b,c € A. Then:
(1) Gulb) < du(1) = a°.
(i) 0 <b<ec = ¢a(b) < Pulc).
(iii) If 0 < b, then ¢q(b)c =0 = ¢4(c)b = 0.
(iv) If0 < b,c, then ¢o(b)c =0 < ¢4(c)b=0.
(v) If0 < b, then ¢a(b) = ¢a(b°).

Proof.

(i) As abaa® = aba, Theorem 2.10.(iii) implies that ¢4(b) = (aba)® < a°.
Also, ¢4 (1) = (a?)° = a° by Theorem 2.10.(vii).

(ii) Assume that 0 < b < ¢. Then 0 < J,(b) < J,(c), s0 ¢u(b) < pa(c) by
Theorem 2.10.(viii).

(iii) Suppose that 0 < b and ¢4(b)c = 0. Then (aba)°c = 0, whence abac = 0,
and therefore (aca)b(aca) = ac(abac)a = 0, whereupon acab = 0 by [SA4], and
it follows that (aca)°b =0, i.e., ¢,(c)b = 0.

(iv) Follows from (iii).

(v) Suppose that 0 < ¢. We have ¢4(c)b = 0 <  ¢,(c)b° = 0, and as
0 < b°, it follows from (iv) that ¢,(c)b® =0 <= ¢, (b°)c = 0. Consequently,
pa(b)c =0 <= ¢4(b°)c = 0. Putting ¢ = 1 — ¢,(b°), we find that ¢,(b) =
D0 (0)Pa(b°), hence ¢, (b) < ¢, (b°). Similarly, putting ¢ = 1 — ¢4(b), we obtain

() < gu(b). O

8The terminology derives from the fact that, for p € P, the restriction of ¢, to P is a so-called
Sasaki projection on P [14, p. 99]. See Theorem 5.6 below.
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THEOREM 4.10. Let 0 # v € P and define vAv := J,(A) = {vav : a € A}
={beA: b=bv=wvb. Then vAv is norm-closed in A and, with the
partial order inherited from A, vAv is a synaptic algebra with unit v and en-
veloping algebra vRv.? Moreover, the order-unit norm on vAv is the restric-
tion to vAv of the order-unit norm on A, and for all a,b € vAv, we have:
a o b, a® la|,a™, a”,sgn(a) € vAv; J,(A) C vAv; ¢.(A) C vAv; and
0<a = a'/? € vAv.

Proof. By Lemma 4.4.(ii), J,: A — A is norm continuous, and since vAv is
the set of fixed points of J,, it follows that vAv is a norm-closed linear subspace
of A. Let b € vAv. Then there exists n € N such that b < n = nl; hence
b= J,(b) <nJ,(1) = nv, so v is an order unit in vAv. By a similar argument,
if 0 <A éeR,then —A <b< A = =X <b < A conversely, —Av <
b < 2w = —-X<b< X follows from the fact that 0 < v < 1; hence
|6l =inf{O <A e€R: —Av <b < Av}. Thus, [SA1] holds for vAv.

That vAv satisfies [SA2]-[SA4] is obvious. If 0 < b € vAw, then, since b =
bv = vb and b/? € CC(b), we have 0 < vb'/2v = vb'/2 = b1/2¢ with (vb'/2)2 = b;
hence b'/2 = vb'/? by the uniqueness of square roots (Theorem 2.2), and it
follows that b'/2 € vAv. Thus, vAv satisfies [SA5]. If b € vAv, we again have
b = bv = vb, whence b° < v, and since b° € CC(b), it follows easily that
b° € vAv. Thus, vAv satisfies [SAG].

To show that vAv satisfies [SAT], suppose that v < b € vAv. Then 1 =
v+ (1—v) <b+1—v with b =vb=0bv. By [SAT7], there exists ¢ € A such
that 1 = ¢(b+1—v) = (b+ 1 —v)e. Applying J, to both sides of the latter
equation, we find that v = vebv = vbev = vevb = bvcw, and since vev € vAw, it
follows that vAv satisfies [SA7]. Obviously, vAv inherits condition [SA8] from
A. We omit the completely straightforward proofs of the remaining assertions
of the theorem. O

5. Orthomodularity of the projection lattice

DEFINITION 5.1. The mapping +: P — P is defined by pt := 1 — p for all
p € P. If p,q € P, we say that p is orthogonal to ¢, in symbols p L g, iff p < ¢*.

We note that p L. ¢ = ¢ L p and that p L. p <= p = 0. In this section
we are going to prove that, with p — p := 1 — p as the orthocomplementation,
P is a orthomodular lattice as per the following definition ([3, 14]).

9n dealing with the synaptic algebra vAv in the presence of the synaptic algebra A, we cannot
follow the convention (previously adopted for A) of identifying real numbers A with multiples
Av of the unit element v.
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DEFINITION 5.2. Let X be a partially ordered set (poset). A mapping z — x+
from X to X is called an involution iff it is order reversing (z <y = y*+ < z7t)
and of period 2 ((z+)*+ = z) for all z,y € X. An orthomodular poset (OMP)
is a partially ordered set X with a smallest element 0, a largest element 1, and
an involution +: X — X, called the orthocomplementation, such that, for all
z,y € X:
(i) The infimum (greatest lower bound) z A z+ of z and z exists in X and
rAxt=0.

(ii) If # <y, then the supremum (least upper bound) x V y exists in X.

(iii) If z <y, then y = 2 V (21 A y).
An orthomodular lattice (OML) is an OMP X that is a lattice (i.e., every pair
z,y € X has an infimum x A y and a supremum z Vy in X.)

Let X be a poset and let a,b,x,y € X. If we write a = x Ay, or x Ay = a, we
mean that the infimum (greatest lower bound) x Ay of x and y exists in X and
that it equals a. A similar convention applies to an existing supremum (least
upper bound) b =z V y of x and y in X. An involution z — z* on X gives rise
to a De Morgan duality on X whereby existing infima are converted to suprema
and vice versa. For instance, if a = x Ay, then a* =zt vV y+. Also, if X has a
smallest element 0 and a largest element 1, then 0+ = 1 and 1+ = 0. Obviously,
the mapping p — p = 1 — p (respectively, e — 1 — ¢) is an involution on the
poset P (respectively, on the poset E), and a — —a is an involution on A.

Suppose that X is an OMP with 2 — 2+ as the orthocomplementation.
Then by Definition 5.2.(i) and De Morgan duality, we have both 2 A 2+ = 0 and
zVat =1, ie., 1 is an orthogonal complement, or for short, an orthocomplement
of zin X. Let z,y € X with < y. Then z < (y*)*, whence x V y* exists in X
by Definition 5.2.(ii), and therefore z- Ay = (zVy)' exists in X by De Morgan
duality. Since x < xVyt = (z+ Ay)t, it also follows from Definition 5.2.(ii) that
the supremum zV (2 Ay) exists in X. The condition z <y = y =2V (zTAy)
in Definition 5.2.(iii) is called the orthomodular law.

LEMMA 5.3. For all p,q € P:
(i) pCq = pg=pAgq.
(i) p L g < pg=0.
(iii) p L g = pVg=p+gq.
(iv)p<q = qg—p=p-ANgeP.
(v) With p s p*t :=1—p as the orthocomplementation, P is an OMP.

Proof.
(i) Assume that pg = gp. Obviously, (pq)? = pq, so pq € P. Also p(pq) = pq
and ¢(pq) = pg, so pqg < p,q by Theorem 2.4. Suppose that r € P and r < p, q.
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Again by Theorem 2.4, rp = pr = r and rq = qr = r, whence rpq = r, i.e.,
r < pq. Therefore pg = p A q.

(ii) By Theorem 24, p L ¢ < p<1—q <= p=p(1—q)=p—pg
pq = 0.

(iii) Suppose that p L ¢ Then pg = 0 by (ii), so gp = 0 by Lemma 2.9.(iv),
and it follows that (p+¢q)? = p*+¢*> =p+gq,ie.,p+q € P. As0 < p,q, we have
p,q < p+ q. Suppose that r € P with p,q < r. Then, by Theorem 2.4, p = pr
and ¢ = ¢r, whereupon p+q = (p+q)r, i.e., p+¢q < r. Therefore, p+q=pVgq.

(iv) Suppose that p < ¢ = (¢1)*. Then by (iii), p+ ¢+ = pV ¢+ € P, whence
(p+g" ) =p-AgeP. But (p+g ) =1-(p+1-q) =q—p

(v) Obviously, 0 is the smallest element and 1 is the largest element in the
poset P. In view of (ii), it remains only to show that the orthomodular law
holds in P. But, if p,q € P with p < g, then by (iv), ¢ —p = p* A ¢ and by (iii),
¢=p+(@-p)=p+ @ Ag)=pV (" Aq). O

THEOREM 5.4. Let a € A. Then:

(i) Ifp,q € P, then ¢a(p) L g <= p L ¢a(q).
(il) ¢q preserves all existing suprema in P, i.e., if @ C P and r =\ Q, then

¢a(r) = V{d)a(Q) HIVAS Q}

Proof. Part (i) follows from Theorem 4.9.(iv) and Lemma 5.3.(ii). To prove
part (ii), suppose that @ C P and r = \/ Q. Then, for all ¢ € Q, 0 < r < g,
whence ¢4(q) < ¢a(r) by Theorem 4.9.(ii). Suppose that t € P and ¢,(q) <t
for all ¢ € Q. Then, for all ¢ € Q, ¢.(q) L t*+, whence, by (i), ¢ L ¢a(t1), i.e.,
q < (¢a(tt))t, and it follows that 7 < (¢,(t+))L. Consequently, by (i) again,

ba(r) Lt ie., ¢o(r) < t, and therefore ¢, (r) = \/{qba(q) D q€ Q} d
LEMMA 5.5. Let p,q,r € P. Then:
(i) ¢p(r) <p.
(i) r<p <= ¢p(r) =r.
(iii) r Lp <= ¢p(r)=0.
(iv) pAq exists in P andp A q=p— dp(qgh).

Proof.

(i) By Theorems 4.9.(i) and 2.10.(ii), ¢p(r) < p° = p.

(ii) If » < p, then r = pr = rp, so ¢,(r) = (prp)° = r® = r. The converse
implication follows from (i).

(ili) By Lemma 5.3.(ii), [SA4], and Theorem 2.10.(i), p L r <= pr=0 <=
prp=0 < (prp)° =0 < ¢,(r) =0.
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(iv) Let ¢ == (¢p(q7))" = 1 — p(q-) € P. By (i), ¢p(¢) < p, whence
pC¢,(qt) and po,(gt) = ¢p(q). Therefore, by parts (i) and (iv) of Lemma 5.3,

pAt=pt=1p=p—¢(a") =pA(dp(g"))" € P, (1)
By (1), pAt L ¢,(¢t), whence by Theorem 5.4.(i), ¢,(p A t) L ¢t ie.
dp(pAt) <q. But, p At < p, whence by (ii), ¢p(p At) = p At, and we
have p At < q. Thus pAt < p,q. Suppose r € P and r < p,q. By (ii),
bp(r) =1 < q, so ¢p(r) L gF, and therefore r L ¢,(¢) by Theorem 5.4.(i);
hence, 1 < (¢,(¢"))* =t. But r < p; hence r < pAt by (1), and it follows that
pAt=pAgqg. [

THEOREM 5.6. P is an OML and, for all p,q € P, ¢,(q) =p A (p* V q).

Proof. Let p,q € P. Then by Lemma 5.5.(iv), p A q exists in P, so by De Mor-
gan duality, pV ¢ = (p* A ¢+)* also exists in P. Therefore, P is an OML. Also,
as p < pt Vg, we have p Vg =pt VvV (pA (ptVq)) by the orthomodular law;
hence, by Theorem 5.4.(ii) and parts (iii) and (ii) of Lemma 5.5,

dp(q) = dp(p™) V dp(q) = dp(pV Q)
=¢p(p-V(pA (P VQ))
= ¢p(p™) Vop(p A (P V) =pA(pH V). 0

Two elements p and ¢ of an orthomodular lattice are said to be compatible (or
to commute) iff p = (pAq) V (pAgqt) [14, p. 20]. By a standard argument (e.g.,
[7, Theorem 3.11]), if p,q € P, then p and ¢ are compatible in the foregoing
sense iff p Cq.

6. Synaptic versus GH-algebras

Every generalized Hermitian (GH) algebra G [9, Definition 2.1] is a synaptic
algebra. Indeed, [SA1] follows from [9, Theorem 4.2] and parts (ii), (iii), and
(iv) of [9, Definition 2.1] imply [SA2]-[SA4]. Also, [SA5] follows from [9, The-
orem 4.5], [9, Theorem 5.2] implies [SA6], and [SAT7] is a consequence of [10,
Lemma 4.1]. Finally, by [9, Lemma 6.6.(iii)], G satisfies [SA8]; hence G is a
synaptic algebra.

By [9, Definition 2.1.(vii)], a generalized Hermitian algebra G has the follow-
ing commutative Vigier'® property:

[CV] Every bounded ascending sequence g1 < g2 < --- of pairwise commuting
elements in G has a supremum g in G and g € CC({gn : n € N}).

10gee [6, Section 5] for the origin of the terminology
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Clearly, a synaptic algebra A is a GH-algebra iff it satisfies [CV]. The condi-
tion [CV] is quite strong!! (see [9, Section 4]), and the main impetus for the
formulation in Definition 1.1 is to replace [CV] by some of its algebraic con-
sequences [SA5], [SA6], and [SAT|, accompanied by the considerably weaker
condition [SAS].

As an indication of the extent to which synaptic algebras generalize GH-alge-
bras, we may consider the commutative case. The projections in a commutative
GH-algebra form a o-complete Boolean algebra; moreover, every o-complete
Boolean algebra can be realized as the (Boolean) lattice of projections in a
commutative GH-algebra [10, Theorem 5.7]. On the other hand, the projections
in a commutative synaptic algebra form a Boolean algebra, which need not be
o-complete; moreover, every Boolean algebra B can be realized as the (Boolean)
lattice of projections in a commutative synaptic algebra. Indeed, by Stone’s
theorem, B can be represented as the field .%# of compact open subsets of a totally
disconnected Hausdorff space X, and the projection lattice of the commutative
synaptic algebra A in Example 1.2 is isomorphic to B.

7. Invertible and regular elements

As we now show, the results in [10, Section 4] pertaining to invertible and
von Neumann regular elements of a GH-algebra G go through for our synaptic
algebra A, although we must be a little careful since the proof of [10, Lemma 4.1]
depends on the property [CV]. As usual, an element a € A is invertible iff there
exists a (necessarily unique) element a=' € A such that aa™! =ala=1. Ifa
is invertible, it is clear that a=! € C'C(a) and that a® = 1.

LEMMA 7.1. Let a € A. Then:
(i) If 0 < a and a is invertible, then 0 < a~ 1.

(ii) a is invertible iff |a| is invertible, and if a is invertible, then |a|~! = |a™1|.

Proof.

(i) Suppose 0 < a and a is invertible. AsaC(a~1)? and 0 < (a~!)?, Lemma 1.5
implies that 0 < a(a™')? =a~!.

(ii) Let s := sgn(a). By Theorem 3.6, s € CC(a), s*> = a°, sa = as = |al,
and s|a| = |a|s = a. Suppose a is invertible. As s € CC(a), we have s C a~!
and |a|(sa™1) = (sa~!)|a|] = 1; hence |a| is invertible and |a|~! = sa~!. Also,
52 =a° =1, and by (i), 0 < sa™!. But, (sa™!)? = s*(a™1)? = (a™1)?, whence

pgy instance, as a consequence of [CV], the orthomodular lattice of projections in a GH-al-
gebra is necessarily o-complete [9, Theorem 5.4].
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la|7t = sa™! = |sa~!| = |a~!|. Conversely, if |a| is invertible, it is clear that a
is invertible with =1 = s|a|!. O

THEOREM 7.2. Ifa € A, then a is invertible iff there exists 0 < € € R such that
e <lal.

Proof. Suppose first that a is invertible. Then, by Lemma 7.1, |al is invertible.
As 1 is an order unit, there exists n € N such that |a|~! < n, and since |a|
commutes with n—|a| !, Lemma 1.5 implies that 0 < (n—|a|~1)|al, i.e., 1 < nlal.
Consequently, with 0 < € := 1/n, we have € < |a.

Conversely, suppose 0 < € < |a|. Then 1 < e~ !|al; hence by [SA7], e !|a| is
invertible, and it follows that |a| is invertible with |a|™' = e~ (¢~ !]a|)~*. Thus
a is invertible by Lemma 7.1. |
DEFINITION 7.3. Let a € A.

(i) a is von Neumann regular iff there exists b € A such that ab,ba € A and

aba = a.

(ii) a is regular iff there exists 0 < € € R such that ea® < |a.

Obviously, 0 is both von Neumann regular and regular. The proof of the
following theorem is virtually identical’? to the proof of [10, Theorem 4.5].

THEOREM 7.4. If 0 # a € A, then the following conditions are mutually equiv-
alent:

(i) a is von Neumann regular.

(ii) There exists r € a®Aa® such that ar = ra = a°.

(iii) @ 4s invertible in the synaptic algebra a®Aa®.

(iv) a is reqular.
COROLLARY 7.5. If a € A, then a is invertible iff a is regular and a° = 1.

If 0 # a € A and a is regular, then the (necessarily unique) inverse of a in
a®Aa® (Theorem 7.4) is called the pseudo-inverse of a in A, and by definition,

the pseudo-inverse of 0 is 0. If a is regular, it is not difficult to show that the
pseudo-inverse of a belongs to CC(a).

THEOREM 7.6. If a € A, then a is reqular iff both a* and a™ are regular.
Proof. Let p:= (a™)° and ¢ := (a~)°. Then by Theorem 3.3, p,q € CC(a),
p+q=a®, pg=pa- =0,qp=qa” =0, pa=pat =a*,and qa=qa~ =a".
Suppose that a is regular. Then there exists 0 < € € R with ¢(p + ¢q) = ea® <
la| = a™ +a, s0 ep = ple(p+q)) < pla™ +a") = at = |aT|, whence a* is
regular. Likewise, e¢ < a~, so a~ is regular. Conversely, if both a™ and a~

12Note that a®Aa® is a synaptic algebra by Theorem 4.10.
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are regular, there exist 0 < a, 8 such that ap < a™ and B¢ < a™; hence with
€ := min{q, 8}, we have ea® = €(p + ¢) < a™ +a~ = |al, and it follows that a is
regular. O

COROLLARY 7.7. a € A is invertible iff a® = 1 and both a™ and a~ are regular.

8. Spectral resolution

In this section, we show that the synaptic algebra A is a so-called spectral
order-unit normed space; hence the results of [8] are at our disposal. In par-
ticular, every element in A both determines and is determined by a family of
projections — its spectral resolution.

As per [8, Definition 1.5 (i)], an element a € A is compatible with a projection
p € Piff a = J,(a)+ Ji—p(a). Thus, by Lemma 4.6.(i), C(p) is the set of
all elements of A that are compatible with p; hence, the notation used in [8,
Definition 1.5 (i) and ff.] is consistent with our notation in this article.

THEOREM 8.1. The family (Jp)pcp is a spectral compression base [8, Defini-
tion 1.7] for the order-unit space A.

Proof. To begin with, we have to show that P is a normal sub-effect algebra
of E ([5, Definition 1]). Of course, 0,1 € P,andp € P = 1—p=pt € P.
Also, if p,qg € P with p+¢q < 1, then p+ ¢ = pV ¢ € P by Lemma 5.3.(iii).
Therefore P is a sub-effect algebra of E. Suppose that d, e, f,d+e+ f € E with
pi=dt+ec€Pandgq:=d+f€P. Thene+g=d+e+ f<1l,s0e<1—gq,
and therefore by Theorem 2.4, ¢ = e(1 — q), i.e., eq = 0. Also, d < d+ f = g,
so dg = d by Theorem 2.4, and it follows that p¢g = (d + e)g = dg = d. By
symmetry, gp = d; hence by Lemma 5.3.(i), d = pA g € P, and it follows that P
is a normal sub-effect algebra of F.

Now let p,q,r € P with p+q+r < 1. Then pg = pr = qr =0, p+r =pVr € P
and g +7r =qVr € P, whence, for all a € A,

Jptr(Jgir(a)) = (p+7)(g+7)alg +r)(p+7) = rar = Jp(a),
and it follows that (J,)pcp is a compression base for A ([5, Definition 2]).

If e € E, then by Theorem 2.10.(vii), €° is the smallest projection p such that
e < p; hence the compression base (J,)pcp has the projection cover property
([8, Definition 1.4]).

Let a € A and let p := (a™)°. Then by parts (i), (iii), and (vi) of Theorem
3.3, we have C(a) C C(p), Jp(a) = pap = pa = at > 0, and J1_,(a) =
(1-p)a(l—p)=(1—-pla=a—pa=a—at =—a~ <0. Thus, the compression
base (Jp)pep has the comparability property ([8, Definition 1.6]), and therefore
(Jp)pep is a spectral compression base for A. a
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If a € A, it is clear that, for all p € P,
p<l—a’ <= a’p=0<= ap=pa=0 < (aEC(p) & Jp(a):pap:O).
Therefore, as per [8, Theorem 2.1 and ff.], the mapping ': A — P defined by
a' :=1—a° for all a € A is effective as the Rickart mapping on A. We note
that, for p € P, we have p' =1 — p = p*.

Let a,b € A. In [8] the notation b € C'PC(a) means that, for all p € P,
a € Clp) = b e C(p). Thus, b € CPC(a) < C(a)NP C C(b);
hence, CC(a) € CPC(a). For instance, by [8, Lemmas 2.1.(vi), 2.4.(iv)],
a®,lal,a™ € CPC(a), but for our synaptic algebra A, we have the (possibly)
stronger conditions a°, |a|, a™ € CC(a).

In view of the remarks above, we can translate the results in [8] into our
present formalism by replacing a’ by 1 — a°, a” by a°, and p’ by pt =1 —p
for all a € A and all p € P. Moreover, if a C p, we can replace J,(a) by pa
(or by ap).

DEFINITION 8.2. Let ¢ € A and A € R. Then:

(i) The spectral lower and upper bounds L and U for a are defined by L :=

supfA €R: A<a}and U:=inf{\ e R: a < \}.
(i) The family of projections (px)xer defined by py =1 — ((a — A\)*)° is
called the spectral resolution of a.

(iii) The family of projections (dx)rer defined by dy := 1—(a—\)° is called the
family of eigenprojections of a. If dy # 0, then A is called an eigenvalue
of a.

STANDING ASSUMPTIONS 8.3. In what follows: a € A; L and U are the spectral
bounds for a; (px)aer is the spectral resolution of a; and (dy)xer is the family
of eigenprojections for a.

By [8, Theorem 3.1], —oo < L < U < o0, ||a|| = max{|L|,|U|}, and L < a
< U. The following theorem is a consequence of [8, Theorems 3.3, 3.5, and 3.6].
THEOREM 8.4. For all A\, u € R:
(i) pr, dx € CC(a); hence pxCpy, px C d,, and dy C d,,.
(i) pala —A) <0< (1 —pa)(a—A).
(i) A<pu = pr <pu and p, —px =pu AN (1 —Dpy).
(iv) A<p = dy<pr<1—-d, = dyLd,.
(V) p2U <= p,=1.
(vi) A< L = px=0,and L <A = 0 < py.
(vii) If « € R, then po = N{p,: a<p e R}
(viii) If « € R, then po —do = \/{pr: a > X € R}.
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By [8, Theorem 3.4, Remark 3.1, and Corollary 3.1], we have the following
theorem and corollary.

THEOREM 8.5. Suppose that Mo, A\1,..., A, ER with \g < L < A < --- < Ay
= U, and let v; € R with A\i_1 < v < A\ fori = 1,2,...,n. Define u; :=
Dx; — Py fori=1,2,....n, and let € := max{\;, — \i—1 : ¢ = 1,2,...,n}.
Then:
n
Ug, Uz, . .., Uy € PNCC(a), Zuz =1, and

i=1

<e.

n
a— E Yits
i=1

According to Theorem 8.5, a can be written as a norm-convergent integral

U
a= [ Xdpy, of Riemann-Stieltjes type; hence a not only determines, but it is
L—0
determined by its spectral resolution.

COROLLARY 8.6. There erists an ascending sequence a1 < ag < --- in CC(a)
such that each a, is a finite linear combination of projections in the family
(PA)rer and lim a, = a.

n—oo

DEFINITION 8.7. A real number p belongs to the resolvent set of a iff there is
an open interval I in R with p € I such that py = p, for all A € I. The spectrum
of a, in symbols spec(a), is defined to be the complement in R of the resolvent
set of a.

As is proved in [8], spec(a) has all of the expected basic properties. For
instance, by [8, Theorem 4.3], spec(a) is a closed nonempty subset of the closed
interval [L,U] C R, L = inf(spec(a)) € spec(a), U = sup(spec(a)) € spec(a),
and [a| = sup{|a] : a € spec(a)}. By [8, Theorem 4.4], a € AT <
spec(a) C RT, and by [8, Corollary 5.1], a € P <= spec(a) C {0,1}. As a
consequence of [8, Theorem 4.2], every isolated point of spec(a) is an eigenvalue
of a, and every eigenvalue of a belongs to spec(a).

DEFINITION 8.8. An element in A is simple iff it is a finite linear combination
of pairwise commuting projections.

The following result is a consequence of [8, Theorems 5.2 and 5.3].

THEOREM 8.9. The simple elements of A are precisely those with finite spec-
trum. Let a be a simple element of A. Then a can be written uniquely as

n n
a= Z a;u;, where o < ag < -+ <y, 0# u; € P, and Y u; = 1. Moreover,

1=1 i=1
n
a is regular, |a| = Y |oglug, |la|| = max{|as| : i =1,2,...,n}, a® = 3 w,
i=1 a;#0
and u; = dq, fori=1,2,...,n.
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As a consequence of Corollary 8.6, each element a € A is the norm limit
(hence by Theorem 4.7.(ii) also the supremum) of an ascending sequence of
pairwise commuting simple elements, and it follows that the simple elements in
A (hence by Theorem 8.9, also the regular elements in A) are norm-dense in A.

THEOREM 8.10. Ifb€ A, thenbC a iff bC py for all A € R.

Proof. For A\ € R, we have py € CC(a); hence b C' a implies that b C py.
Conversely, suppose that b C py for all A € R and let (a,)nen be the ascending
sequence in Corollary 8.6. As a,, € CC(a) for all n € N, the elements of
the sequence (ay)nen commute with each other. As each a, is a finite linear

combination of projections py, we have a,, € C(b) for all n € N, and it follows
from [SAS8] that a € C(b). O

THEOREM 8.11. C(a) is norm-closed in A and, with the partial order inher-
ited from A, C(a) is a synaptic algebra with unit 1 and enveloping algebra R.
Let b,c € C(a). Then: boc, b°, |b], bT, b~, Jp(c), dp(c) € Cla); 0 < b =
bl/2 € C(A); and the spectral resolution and family of eigenprojections of b are
the same whether calculated in A or in C(a).

Proof. Suppose that (b,)nen is a sequence in C(a) and b, — b € A. Then
by Theorem 8.10, b, € C(py) for all n € N and all A € R, and it follows
from Lemma 4.6.(ii) that b € C(py) for all A € R. Therefore, b € C(a) by
Theorem 8.10, whence C(a) is norm-closed in A. The remainder of the proof is
omitted as it is completely straightforward O

Acknowledgement. The author would like to thank Professor Robert Piziak
of Baylor University who kindly read the draft manuscript of this article and
provided helpful suggestions which greatly improved the final version.

REFERENCES

[1] ALFSEN, E. M.: Compact Convex Sets and Boundary Integrals, Springer-Verlag, New
York, 1971.

[2] ALFSEN, E. M.—SHULTZ, F. W—ST@RMER, E.: A Gelfand-Neumark theorem for
Jordan algebras, Adv. Math. 28 (1978), 11-56.

[3] BERAN, L.: Orthomodular Lattices, An Algebraic Approach. Math. Appl. 18, D. Reidel
Publishing Company, Dordrecht, 1985.

[4] FOULIS, D. J.: Compressions on partially ordered abelian groups, Proc. Amer. Math.
Soc. 132 (2004), 3581-3587.

[5] FOULIS, D. J.: Compression bases in unital groups, Internat. J. Theoret. Phys. 44 (2005),
2191-2198.

[6] FOULIS, D. J.: Square roots and inverses in e-rings, Rep. Math. Phys. 58 (2006),
325-341.

653

Unauthenticated
Download Date | 2/3/17 9:27 PM



(10]
(11]
(12]
(13]
(14]
[15]
(16]

(17]

DAVID J. FOULIS

FOULIS, D. J.—PULMANNOVA, S.: Monotone sigma-complete RC-groups, J. London
Math. Soc. (2) 73 (2006), 304-324.

FOULIS, D. J.—PULMANNOVA, S.: Spectral resolution in an order unit space, Rep.
Math. Phys. 62 (2008), 323—344.

FOULIS, D. J.—PULMANNOVA, S.: Generalized Hermitian algebras, Internat. J. The-
oret. Phys. 48 (2009), 1320-1333.

FOULIS, D. J—PULMANNOVA, S.: Regular elements in generalized Hermitian Alge-
bras, Math. Slovaca (To appear).

GOODEARL, K. R.: Partially Ordered Abelian Groups with Interpolation. Math. Surveys
Monogr. 20, Amer. Math. Soc., Providence, RI, 1986.

GUDDER, S.—PULMANNOVA, S.—BUGAJSKI, S.—BELTRAMETTI, E.: Convez
and linear effect algebras, Rep. Math. Phys. 44 (1999), 359-379.

HANDELMAN, D.—HIGGS, D.—LAWRENCE, J.: Directed abelian groups, countably
continuous rings, and Rickart C*-algebras, J. London Math. Soc. (2) 21 (1980), 193-202.
KALMBACH, G.: Orthomodular Lattices, Academic Press, London-New York, 1983.
KAPLANSKY, L.: Projections in Banach algebras, Ann. of Math. (2) 53 (1951), 235-249.
SARYMSAKOV, T. A.—AYUPOV, SH. A—KHADZHIEV, DZH.—CHILIN, V. I.: Or-
dered Algebras, Fan, Tashkent, 1983 (Russian).

TOPPING, D. M.: Jordan Algebras of Self-Adjoint Operators, Mem. Amer. Math. Soc.
53 (1965).

Received 18. 12. 2008 Emeritus Professor of
Accepted 26. 8. 2009 Mathematics and Statistics

654

University of Massachusetts

USA

Postal Address:

1 Sutton Court
Amherst, MA 01002
USA

E-mail: foulis@math.umass.edu

Unauthenticated
Download Date | 2/3/17 9:27 PM




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts false
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldMT
    /ArialMT
    /Times
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /CZE ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [498.898 708.661]
>> setpagedevice




