期刊论文详细信息
Mathematica Slovaca
Relatively uniform convergences in archimedean lattice ordered groups
Ján Jakubík1  Štefan Černák1 
关键词: lattice ordered group;    vector lattice;    relatively uniform convergence;    o-convergence;   
DOI  :  10.2478/s12175-010-0024-8
学科分类:数学(综合)
来源: Slovenska Akademia Vied * Matematicky Ustav / Slovak Academy of Sciences, Mathematical Institute
PDF
【 摘 要 】

For an archimedean lattice ordered group G let G d and G∧ be the divisible hull or the Dedekind completion of G, respectively. Put G d∧ = X. Then X is a vector lattice. In the present paper we deal with the relations between the relatively uniform convergence on X and the relatively uniform convergence on G. We also consider the relations between the o-convergence and the relatively uniform convergence on G. For any nonempty class τ of lattice ordered groups we introduce the notion of τ-radical class; we apply this notion by investigating relative uniform convergences.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080690806ZK.pdf 311KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:12次