Canadian mathematical bulletin | |
Convex Functions on Discrete Time Domains | |
Ferhan M. Atıcı1  Hatice Yaldız2  | |
[1] Department of Mathematics, Western Kentucky University, Bowling Green, Kentucky 42101-3576, USA;Department of Mathematics, Düzce University, Düzce, Turkey | |
关键词: discrete calculus; discrete fractional calculus; convex functions; discrete Hermite-Hadamard inequality; | |
DOI : 10.4153/CMB-2015-065-6 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
In this paper, we introduce the definition of a convex real valued function $f$ defined on the set of integers, ${mathbb{Z}}$. We prove that $f$ is convex on ${mathbb{Z}}$ if and only if $Delta^{2}f geq 0$ on ${mathbb{Z}}$. As a first application of this new concept, we state and prove discrete Hermite-Hadamard inequality using the basics of discrete calculus (i.e. the calculus on ${mathbb{Z}}$). Second, we state and prove the discrete fractional Hermite-Hadamard inequality using the basics of discrete fractional calculus. We close the paper by defining the convexity of a real valuedfunction on any time scale.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050577201ZK.pdf | 19KB | download |