期刊论文详细信息
Canadian mathematical bulletin
Convex Functions on Discrete Time Domains
Ferhan M. Atıcı1  Hatice Yaldız2 
[1] Department of Mathematics, Western Kentucky University, Bowling Green, Kentucky 42101-3576, USA;Department of Mathematics, Düzce University, Düzce, Turkey
关键词: discrete calculus;    discrete fractional calculus;    convex functions;    discrete Hermite-Hadamard inequality;   
DOI  :  10.4153/CMB-2015-065-6
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

In this paper, we introduce the definition of a convex real valued function $f$ defined on the set of integers, ${mathbb{Z}}$. We prove that $f$ is convex on ${mathbb{Z}}$ if and only if $Delta^{2}f geq 0$ on ${mathbb{Z}}$. As a first application of this new concept, we state and prove discrete Hermite-Hadamard inequality using the basics of discrete calculus (i.e. the calculus on ${mathbb{Z}}$). Second, we state and prove the discrete fractional Hermite-Hadamard inequality using the basics of discrete fractional calculus. We close the paper by defining the convexity of a real valuedfunction on any time scale.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050577201ZK.pdf 19KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:3次