期刊论文详细信息
Commentationes mathematicae Universitatis Carolinae
Summation equations with sign changing kernels and applications to discrete fractional boundary value problems
Christopher S. Goodrich1 
关键词: summation equation;    sign-changing kernel;    discrete fractional calculus;    positive solution;    nonlocal boundary condition;   
DOI  :  10.14712/1213-7243.2015.164
学科分类:物理化学和理论化学
来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics
PDF
【 摘 要 】

We consider the summation equation, for $t\in[\mu-2,\mu+b]_{\mathbb{N}_{\mu-2}}$, \begin{align*} y(t)=\gamma_1(t)H_1\left(\sum_{i=1}^{n}a_iy\left(\xi_i\right)\right) & + \gamma_2(t)H_2\left(\sum_{i=1}^{m}b_iy\left(\zeta_i\right)\right) &+ \lambda\sum_{s=0}^{b}G(t,s)f(s+\mu-1,y(s+\mu-1)) \end{align*} in the case where the map $(t,s)\mapsto G(t,s)$ may change sign; here $\mu\in(1,2]$ is a parameter, which may be understood as the order of an associated discrete fractional boundary value problem. In spite of the fact that $G$ is allowed to change sign, by introducing a new cone we are able to establish the existence of at least one positive solution to this problem by imposing some growth conditions on the functions $H_1$ and $H_2$. Finally, as an application of the abstract existence result, we demonstrate that by choosing the maps $t\mapsto\gamma_1(t)$, $\gamma_2(t)$ in particular ways, we can recover the existence of at least one positive solution to various discrete fractional- or integer-order boundary value problems possessing Green's functions that change sign.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904033858422ZK.pdf 72KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:4次