| Canadian mathematical bulletin | |
| On an Exponential Functional Inequality and its Distributional Version | |
| Jaeyoung Chung1  | |
| [1] Department of Mathematics, Kunsan National University, Kunsan, 573-701 Korea | |
| 关键词: distribution; exponential functional equation; Gelfand hyperfunction; stability; | |
| DOI : 10.4153/CMB-2014-012-x | |
| 学科分类:数学(综合) | |
| 来源: University of Toronto Press * Journals Division | |
PDF
|
|
【 摘 要 】
Let $G$ be a group and $mathbb K=mathbb C$ or $mathbbR$.In this article, as a generalization of the result of Albert and Baker, we investigate the behavior of boundedand unbounded functions $fcolon Go mathbb K$ satisfying the inequality$Bigl|f Bigl(sum_{k=1}^n x_k Bigr)-prod_{k=1}^n f(x_k) Bigr|le phi(x_2, dots, x_n),quad forall, x_1, dots,x_nin G,$where $phicolon G^{n-1}o [0, infty)$. Also, as a distributional version of the above inequality we consider the stability ofthe functional equationegin{equation*}ucirc S - overbrace{uotimes cdots otimes u}^{n-ext {times}}=0,end{equation*}where $u$ is a Schwartz distribution or Gelfand hyperfunction, $circ$ and $otimes$ are the pullback and tensor product of distributions, respectively, and $S(x_1, dots, x_n)=x_1+ dots+x_n$.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912050577100ZK.pdf | 22KB |
PDF