期刊论文详细信息
| Canadian mathematical bulletin | |
| Exceptional Covers of Surfaces | |
| Jeffrey D. Achter1  | |
| [1] Department of Mathematics, Colorado State University, Fort Collins, CO, USA | |
| 关键词: graph; $(g; f)$-factor; $(g; f; n)$-critical graph; binding number; | |
| DOI : 10.4153/CMB-2010-049-7 | |
| 学科分类:数学(综合) | |
| 来源: University of Toronto Press * Journals Division | |
PDF
|
|
【 摘 要 】
Consider a finite morphism $f: X ightarrow Y$ of smooth, projective varieties over a finite field $mathbf{F}$. Suppose $X$ is the vanishing locus in $mathbf{P}^N$ of $r$ forms of degree at most $d$. We show that there is a constant $C$ depending only on $(N,r,d)$ and $deg(f)$ such that if $|{mathbf{F}}|>C$, then $f(mathbf{F}): X(mathbf{F}) ightarrow Y(mathbf{F})$ is injective if and only if it is surjective.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912050576714ZK.pdf | 35KB |
PDF