期刊论文详细信息
Contributions to Discrete Mathematics
A theorem on fractional ID-(g,f)-factor-critical graphs
Yang Xu2  Sizhong Zhou3  Zhiren Sun1 
[1] Nanjing Normal University;Qingdao Agricultural University;Jiangsu University of Science andTechnology
关键词: graph;    binding number;    fractional $(g;    f)$-factor;    fractional ID-$(g;    f)$-factor-critical graph.;   
DOI  :  
学科分类:社会科学、人文和艺术(综合)
来源: University of Calgary * Department of Mathematics and Statistics
PDF
【 摘 要 】

Let $a$, $b$ and $r$ be three nonnegative integers with $2\leq a\leq b-r$, let $G$ be a graph of order $p$ satisfying the inequality $p(a+r) \geq (a+b-3)(2a+b+r)+1$, and let $g$ and $f$ be two integer-valued functions defined on $V(G)$ satisfying $a\leq g(x)\leq f(x)-r\leq b-r$ for every $x\in V(G)$. A graph $G$ is said to be fractional ID-$(g,f)$-factor-critical if $G-I$ contains a fractional $(g,f)$-factor for every independent set $I$ of $G$. In this paper, we prove that $G$ is fractional ID-$(g,f)$-factor-critical if $\operatorname{bind}(G)((a+r)p - (a+b-2)) > (2a+b+r-1)(p-1)$, which is a generalization of a previous result of Zhou.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300375496ZK.pdf 280KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:10次