期刊论文详细信息
| Canadian mathematical bulletin | |
| Extension of the Riemann $xi$-Function's Logarithmic Derivative Positivity Region to Near the Critical Strip | |
| 关键词: Riemann zeta function; xi function; zeta zeros; | |
| DOI : 10.4153/CMB-2009-021-3 | |
| 学科分类:数学(综合) | |
| 来源: University of Toronto Press * Journals Division | |
PDF
|
|
【 摘 要 】
If $K$ is a number field with $n_k=[k:mathbb{Q}]$, and $xi_k$the symmetrizedDedekind zeta function of the field, the inequality$$Re,{frac{ xi_k'(sigma + {m i} t)}{xi_k(sigma+ {m i} t)}} > frac{ xi_k'(sigma)}{xi_k(sigma)}$$ for $teq 0$ isshownto be true for $sigmage 1+ 8/n_k^frac{1}{3}$ improving the result ofLagarias where the constant in the inequality was 9. In the case $k=mathbb{Q}$theinequality is extended to $sige 1$ for all $t$ sufficiently large or smalland to the region $sige 1+1/(log t -5)$ for all $teq 0$. Thisanswers positively a question posed by Lagarias.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912050576636ZK.pdf | 36KB |
PDF