期刊论文详细信息
| Canadian mathematical bulletin | |
| The Waring Problem with the Ramanujan $au$-Function, II | |
| 关键词: Riemann zeta function; xi function; zeta zeros; | |
| DOI : 10.4153/CMB-2009-022-2 | |
| 学科分类:数学(综合) | |
| 来源: University of Toronto Press * Journals Division | |
PDF
|
|
【 摘 要 】
Let $au(n)$ be the Ramanujan $au$-function. We prove that forany integer $N$ with $|N|ge 2$ the diophantine equation$$sum_{i=1}^{148000}au(n_i)=N$$ has a solution in positiveintegers $n_1, n_2,ldots, n_{148000}$ satisfying the condition$$max_{1le ile 148000}n_ill |N|^{2/11}e^{-clog |N|/loglog|N|},$$ for some absolute constant $c>0.$
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912050576637ZK.pdf | 36KB |
PDF