Canadian mathematical bulletin | |
Gauss and Eisenstein Sums of Order Twelve | |
关键词: Jacobian Conjecture; injectivity; Monge--Ampère equation; | |
DOI : 10.4153/CMB-2003-036-9 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
Let $q=p^{r}$ with $p$ an odd prime, and $mathbf{F}_{q}$ denote the finitefield of $q$ elements. Let $Trcolonmathbf{F}_{q} omathbf{F}_{p} $ bethe usual trace map and set $zeta_{p} =exp(2pi i/p)$. For any positiveinteger $e$, define the (modified) Gauss sum $g_{r}(e)$ by$$g_{r}(e) =sum_{xin mathbf{F}_{q}}zeta_{p}^{Tr x^{e}}$$Recently, Evans gave an elegant determination of $g_{1}(12)$ in terms of$g_{1}(3)$, $g_{1}(4)$ and $g_{1}(6)$ which resolved a sign ambiguitypresent in a previous evaluation. Here I generalize Evans' result to givea complete determination of the sum $g_{r}(12)$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050576311ZK.pdf | 36KB | download |