期刊论文详细信息
Canadian mathematical bulletin
Gauss and Eisenstein Sums of Order Twelve
关键词: Jacobian Conjecture;    injectivity;    Monge--Ampère equation;   
DOI  :  10.4153/CMB-2003-036-9
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

Let $q=p^{r}$ with $p$ an odd prime, and $mathbf{F}_{q}$ denote the finitefield of $q$ elements. Let $Trcolonmathbf{F}_{q} omathbf{F}_{p} $ bethe usual trace map and set $zeta_{p} =exp(2pi i/p)$. For any positiveinteger $e$, define the (modified) Gauss sum $g_{r}(e)$ by$$g_{r}(e) =sum_{xin mathbf{F}_{q}}zeta_{p}^{Tr x^{e}}$$Recently, Evans gave an elegant determination of $g_{1}(12)$ in terms of$g_{1}(3)$, $g_{1}(4)$ and $g_{1}(6)$ which resolved a sign ambiguitypresent in a previous evaluation. Here I generalize Evans' result to givea complete determination of the sum $g_{r}(12)$.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050576311ZK.pdf 36KB PDF download
  文献评价指标  
  下载次数:139次 浏览次数:9次