期刊论文详细信息
Canadian mathematical bulletin
Characterizing Two-Dimensional Maps Whose Jacobians Have Constant Eigenvalues
关键词: Jacobian Conjecture;    injectivity;    Monge--Ampère equation;   
DOI  :  10.4153/CMB-2003-034-4
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

Recent papers have shown that $C^1$ maps $Fcolon mathbb{R}^2ightarrow mathbb{R}^2$whose Jacobians have constant eigenvalues can be completelycharacterized if either the eigenvalues are equal or $F$ is apolynomial. Specifically, $F=(u,v)$ must take the formegin{gather*}u = ax + by + eta phi(alpha x + eta y) + e \v = cx + dy - alpha phi(alpha x + eta y) + fend{gather*}for some constants $a$, $b$, $c$, $d$, $e$, $f$, $alpha$, $eta$ anda $C^1$ function $phi$ in one variable. If, in addition, the function$phi$ is not affine, thenegin{equation}alphaeta (d-a) + balpha^2 - ceta^2 = 0.end{equation}This paper shows how these theorems cannot be extended by constructinga real-analytic map whose Jacobian eigenvalues are $pm 1/2$ and doesnot fit the previous form. This example is also used to constructnon-obvious solutions to nonlinear PDEs, including the Monge--Amp`ereequation.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050576309ZK.pdf 37KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:13次