期刊论文详细信息
Canadian mathematical bulletin
Exceptional Sets of Slices for Functions From the Bergman Space in the Ball
关键词: symplectic manifold;    Lagrangian foliation;    affine connection;   
DOI  :  10.4153/CMB-2001-019-7
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

Let $B_N$ be the unit ball in $mathbb{C}^N$ and let $f$ be a functionholomorphic and $L^2$-integrable in $B_N$. Denote by $E(B_N,f)$the set of all slices of the form $Pi =Lcap B_N$, where $L$ is acomplex one-dimensional subspace of $mathbb{C}^N$, for which $f|_{Pi}$is not $L^2$-integrable (with respect to the Lebesgue measure on $L$).Call this set the exceptional set for $f$. We give a characterizationof exceptional sets which are closed in the natural topology of slices.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050576195ZK.pdf 36KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:20次