期刊论文详细信息
Canadian mathematical bulletin
On Quantizing Nilpotent and Solvable Basic Algebras
关键词: symplectic manifold;    Lagrangian foliation;    affine connection;   
DOI  :  10.4153/CMB-2001-018-x
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

We prove an algebraic ``no-go theorem'' to the effect that anontrivial pa cannot be realized as an associative algebra with thecommu-ta-tor bracket. Using it, we show that there is anobstruction to quantizing the pa of polynomials generated by anilpotent a on a sm. This result generalizes gr 's famoustheorem on the impossibility of quantizing the Poisson algebra ofpolynomials on $^{2n}$. Finally, we explicitly construct apolynomial quantization of a sm with a solvable a, thereby showingthat the obstruction in the nilpotent case does not extend to thesolvable case.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050576194ZK.pdf 36KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:9次