期刊论文详细信息
Canadian mathematical bulletin | |
$L^p$-boundedness of a singular integral operator | |
关键词: singular integral; rough kernel; Hardy space; | |
DOI : 10.4153/CMB-1998-054-5 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
Let $b(t)$ be an $L^infty$ function on $R$, $Omega (,y')$ bean $H^1$ function on the unit sphere satisfying the mean zeroproperty (1) and $Q_m(t)$ be a real polynomial on $R$ of degree$m$ satisfying $Q_m(0)=0$. We prove that the singular integraloperator $$T_{Q_m,b} (,f) (x)=p.v. int_R^n b(|y|) Omega(,y) |y|^{-n} fleft( x-Q_m (|y|) y' ight) ,dy$$is bounded in $L^p (R^n)$ for $1
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050576056ZK.pdf | 36KB | download |