期刊论文详细信息
Journal of the Australian Mathematical Society
On the uniform Kadec-Klee property with respect to convergence in measure
F. A. Sukochev1 
关键词: primary 46B20;    secondary 46E30;    46L50;   
DOI  :  10.1017/S1446788700037241
学科分类:数学(综合)
来源: Cambridge University Press
PDF
【 摘 要 】

Let E(0, ∞) be a separable symmetric function space, let M be a semifinite von Neumann algebra with normal faithful semifinite trace μ, and let E(M, μ) be the symmetric operator space associated with E(0, ∞). If E(0, ∞) has the uniform Kadec-Klee property with respect to convergence in measure then E(M, μ) also has this property. In particular, if LΦ(0, ∞) (ϕ(0, ∞)) is a separable Orlicz (Lorentz) space then LΦ(M, μ) (Λϕ (M, μ)) has the uniform Kadec-Klee property with respect to convergence in measure on sets of finite measure if and only if the norm of E(0, ∞) satisfies G. Birkhoff's condition of uniform monotonicity.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040544675ZK.pdf 423KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:12次