期刊论文详细信息
Journal of the Australian Mathematical Society
On the error estimates for the Rayleigh-Schrödinger series and the Kato-Rellich perturbation series
Rekha P. Kulkarni1 
[1] Balmohan V. Limaye
关键词: 41 A 25;    41 A 35;    41 A 65;    47 A 70;   
DOI  :  10.1017/S1446788700030937
学科分类:数学(综合)
来源: Cambridge University Press
PDF
【 摘 要 】

Let λ be a simple eigenvalue of a bounded linear operator T on a Banach space X, and let (Tn) be a resolvent operator approximation of T. For large n, let Sn denote the reduced resolvent associated with Tn and λn, the simple eigenvalue of Tn near λ. It is shown thatunder the assumption that all the spectral points of T which are nearest to λ belong to the discrete spectrum of T. This is used to find error estimates for the Rayleigh-Schrödinger series for λ and ϕ with initial terms λn and ϕn, where P (respectively, ϕn) is an eigenvector of T (respectively, Tn) corresponding to λ (respectively, λn), and for the Kato-Rellich perturbation series for PPn, where P (respectively, Pn) is the spectral projection for T (respectively, Tn) associated with λ (respectively, λn).

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040544081ZK.pdf 450KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:17次