Journal of the Australian Mathematical Society | |
Recursive properties of isomorphism types | |
Michael Moses1  | |
关键词: 03 D 45; | |
DOI : 10.1017/S1446788700023302 | |
学科分类:数学(综合) | |
来源: Cambridge University Press | |
【 摘 要 】
For Γ a revursively enumerable set of formulae, a structure U on a recursive universe is said to be “Γ-recursively enumerable†if the satisfaction predicate restricted to Γ is recursively enumerable (equivalently, if the formulae of Γ uniformulae of Γ uniformly denote recursively enumerable relations on U).For recursively enumerable sets Γ1 ⊆ Γ2 of formulae we shall, under certain conditions, characterize structures U with the following properties.1) Every isomorphism form U to a Γ1-recursively enumerable structure is a recursive isomorphism.2) Every Γ1-recursively enumerable structure isomorphic to U is recursively isomorphic to U.3) Every Γ1-recursively enumerable structure isomorphic to U is Γ2-recursively enumerable.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040543498ZK.pdf | 914KB | download |