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Abstract

For F a recursively enumerable set of formulae, a structure 31 on a recursive universe is said to be
'T-recursively enumerable" if the satisfaction predicate restricted to F is recursively enumerable
(equivalently, if the formulae of F uniformly denote recursively enumerable relations on 91).

For recursively enumerable sets F] C F2 of formulae we shall, under certain conditions, characterize
structures 31 with the following properties.

1) Every isomorphism from 21 to a F,-recursively enumerable structure is a recursive isomorphism.
2) Every F,-recursively enumerable structure isomorphic to 21 is recursively isomorphic to 9t.
3) Every F,-recursively enumerable structure isomorphic to 31 is F2-recursively enumerable.

1980 Mathematics subject classification (Amer. Math. Soc): 03 D 45.

0. Introduction

A structure on a recursive universe is said to be decidable if the satisfaction
predicate is recursive (equivalently, if all formulae uniformly denote recursive
relations). It is said to be recursive (respectively recursively enumerable) if the
satisfaction predicate restricted to atomic formulae is recursive (respectively,
recursively enumerable).

Structures with certain recursive properties have been characterized algebrai-
cally. Some of these characterizations have been proved using very similar finite
injury priority constructions. This paper presents the basic technique of these
constructions. The concepts of recursive and decidable structures are generalized
to " F-recursively enumerable" structures and the results presented in this context.
Some of the results generalized are the characterizations of structures with the
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270 Michael Moses Ul

following recursive properties. (The results appear in this paper as the corollaries
numbered.)

(Cor. 3.1) Every isomorphism from 21 to a recursive structure is a recursive
isomorphism (Ash and Nerode [1], Goncharov [3]).

(Cor 2.2) Every recursive structure isomorphic to 21 is recursively isomorphic to
31; that is, 31 is "recursively categorical" (Goncharov [3]).

(Cor. 2.1) Every decidable structure isomorphic to 21 is recursively isomorphic
to 21; that is, 31 is "decidably categorical" (Nurtazin [6]).

(Cor. 1.2) Every recursive structure isomorphic to 21 is a decidable structure
(Nurtazin [6]).

(Cor. 1.1) Every isomorphism from 2t to a recursive structure carries R (a
relation on 31) to a recursively enumerable relation; that is, R is "intrinsically
recursively enumerable" on 31 (Ash and Nerode [1]).

Our general results have as corollaries some results new to the literature (for
example Corollaries 1.4 and 2.3).

We consider only structures in an effective language £ and with recursive
universes. Without loss of generality we take the non-logical symbols of £ to be a
list {.P,: i < u} of predicates. We write 31, 93 for structures on universes A, B
respectively. Some model-theoretic terminology used may need to be defined.
Form(t) is the set of all £-formulae. We denote a finite sequence at,.. .,ai of
elements of A by a C A. The sequence x of variables corresponding to a is
x = xt ,...,Xj. If / is a function from A to B we write f(a) for the sequence
/ (a , ) , . . . , / (a , )-f\M is the restriction of / t o M.

For F c Form(£) we define:

A T = {>i(3c,) A • • • A<j>n(xn): fyiXj) E T}, that is, all finite conjunctions,
c, y): 4>(x, y) G T}, and

, y): <Kx, y) G T}.
We say \j/(a, y) is an atom of the Lindenbaum algebra 5(Th(2t, a)) if for every

formula <t>(a, y) if $1 N 3y(yp(a, y) A <j>(d, y)) then 21 N V_y(i//(a, y) -> 4>(d, y)).
An equivalent definition is: if a,, d2 C A are such that 2t t= ^(a, a,) and 2i 1=
\p(d, d2), then there is an automorphism / : 31 == 31 such that f(a) = a and
/ ( a , ) = a2.

{ } is the empty set.
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1

Let F be a recursively enumerable (r.e.) subset of Form(£) . An £-structure 21 is

Y-recursively enumerable (F-r.e.) if it has a recursive universe and the satisfaction

predicate restricted to F is recursively enumerable. The following are equivalent

formulations of the definition.

i) The set of sentences {^(a): <j>(x) GT,aCA and 21 1= <j>(a)} is r.e.

ii) There is a partial effective procedure which when applied to any a C A and

<j>(x) G F terminates if and only if 21 h <t>(a).

Listed below are some examples of F-r.e. structures.

1) A structure 21 with an r.e. relation R. 21 is F-r.e. for F = {R}.

2) An r.e. structure 21. 21 is F-r.e. for F = {/>: / < « } .

3) A recursive (rec.) structure 21. 21 is F-r.e. for F = {/*,-: / < w} U {-,/",:

/' < w}.

4) A decidable (dec.) structure 2t. 21 is F-r.e. for F = Form( £ ) .

Notice that if 21 is F-r.e. then it is also 3 A F-r.e.

Let F, C F2 be r.e. sets of £-formulae. Our first theorem characterizes structures

21 with the property that every F,-r.e. structure isomorphic to 21 is F2-r.e. The

characterization is, however, subject to a certain decidability assumption.

For 2 , , 2 2 C Form(£) we say % is 2 , -» ~22-decidable if there is an effective

procedure which when applied to any a C A, \p(x, y) E 2 , and <$>(x, y) E 2 2

determines whether or not 2t 1= Vy(\p(a, y) -»<j>(d, y)). Tak ingy to be the empty

sequence and <t> any formula such that 21 1= -,<t>(a) we see that if 21 is 2 , -> 22-dec.

it is 2,-rec. (that is, 2 , U - , 2 , -r.e.). Similarly, taking \p to be any formula such

that 21 E \p(a), we see that 21 is 22-rec. We may concern ourselves only with sets

21 and 2 2 for which such formulae \p and <j> exist because the results in which we

use this definition (Theorems I, II and III) are otherwise trivially true.

THEOREM I. Let F,, F2 be r.e. sets with {/>,: / < «} C F, C F2 C Form(£ ) and

3 A r , rec. in F2. If % is (3 A F,) ^ (F2 - (3 A Tx))-dec, the following are

equivalent.

1) Every F,-r.e. structure isomorphic to 21 is T2-r.e.

2) For some a C A there is an effective procedure which when applied to any

b C A — a and T2-formula <t>(x, y) such that 21 N 4>(a, b), produces a 3 A F,-

formula \}*(x, y) such that % ¥ 4>{a, b) and 21 t= Vy(i//(a, y) -> </>(a, y)).

PROOF. We first show that 2) => 1). Let 23 be a F,-r.e. structure a n d / : 21 =s 23.

We show that 53 is F2-r.e.

Let a be the sequence described in 2) and {^,(a, a , ) , $ 2 ( a , a2),...} an

effective listing of all F2-sentences true in 21 (21 is F2-r.e.). Apply the effective
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272 Michael Moses HI

procedure described in 2) to each element of this list to obtain another effective
list {^,(a, yx), ^2(a, y2),---} of formulae such that V/ < «, 21 1= ^,(a, a,) and
21 *= Vy,(>//,(a, £•) -> 4>,(a, y,)). 93 is r,-r.e. and therefore 3 A r,-r.e. Thus there is
an effective list of all 3 A r,-sentences </>(ft) true in 23. If for some * < to and
bCB i//,.( f(a), ft) is a member of this list, then list <*>,( / (a) , ft) as true in 93. We
show that this (effective) process lists precisely those r2-sentences true in 93.

If the process decides </>,(/(a), ft) is true in 53, then 93 ¥ ^ , ( / (a) , ft). But
21 1= V>M(fl, y,) - *,(fl, j>)) a n d / : 21 a 93. Therefore 93 N ^ . ( ^ ( / ( a ) , £•) -
*i ( / (a) , £•)); and so 93 1= <*>,(/(a), ft).

If (/>(/(a), ft) is a r2-sentence true in 93, then, since/: 21 s 33, 21 1= </>(«, /~ '(ft))-
Therefore, since 21 is r2-r.e., for some / < a, 4>(d, /"'(ft)) = <>,-. Then 21 f=
^/,(a, f~\b)) and, as before, we have 93 N i/*,(/(a), ft). Thus, the process will list
<£(/(a), ft) as true in 93. This shows that 93 is r2-r.e.

We now show that —,2) => —, 1) via a finite injury priority construction. Let 2f be
a (3 A r , ) -» (F2 — (3 A F]))-dec. structure on recursive universe A =
{a0, a , , . . .} satisfying -,2). We shall construct a F,-r.e. 93 in stages and a
g: 93 s 21 such that 93 is not F2-r.e., thus showing that 1) is false. 93 will be
a structure on recursive universe B = {fto,ft,,...}.

At each stage s of our construction we shall define a partial map gs: B -» A so
that g — \imsgs exists, and is a surjection from B to A. At stage s we define a
finite set 2* of F,-sentences </>(ft) as follows. Since 21 is F,-r.e. there is an effective
list of all F,-sentences <j>(a) true in 21. We define 2T1 = { } and Is - 2*" ' U
{<f>(b): <j>(x) E F, ft~C dom(gs) and <#>(g/ft~)) has been listed as true in 21 by this
stage}. We write A 2 s for the conjunction of all the sentences in 2*. 93 is defined
to be the structure on B satisfying all the quantifier-free sentences in 2 = Us 2J .
We will ensure that g: 93 s 21.

Let Wo, Wu... be a list of all r.e. subsets of F2-sentences 4>(b) with ft"C B. The
idea of the construction is to use the hypothesis to diagonalize over the We: e < to
to ensure that none of them lists precisely those F2-sentences true in 93. W*
denotes the subset of We calculated by stage s.

Our requirements are:
Pl:be £ dom(g),
P}\ ae G ran(g), and
Qe- we ^ {>(ft): 4>(x) G T2, ft C B and 93 1= $(£)}.
The basic action to meet the requirements Qe is this. If at stage s we have

<>(ft) G W/ with ft C dom(gj , at stage s + 1 we attempt to define gJ + 1 so that
21 •= -><X^J+i(ft)); and therefore 93 t= -,<Xft~). A problem arising from this action
is that since gJ+1(ft) ¥= gs(b), we run the risk that g = l i m ^ may not exist.
Another problem is that as we want 2 = Us 2 s to be the F,-diagram of 33, we
must arrange that no sentence of 2 s is made false by our definition of gs+i.
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[s I Recursive properties of isomorphism types 273

DEFINITIONS. P] requires attention at stage s + 1 if be & dom(gs).
Pi is injured at stage s + 1 if gs+ x(be) ¥= gs(be),
Pj2 requires attention at stage s + 1 if ae f£ r&n(gs).
P} is injured at stage s + 1 if g~+i(ae) ¥= gj\ae).
In order to meet the requirements Qe we define at some stages 5 sequences

d* C 2? with themtention that if {4>(b): <f>(x) E T2, b C B and 93 1= 4>{b)} C We,
then de — limsd

s
e exists, and there is a formula 6(x) G T2 such that 0{de) e We,

At any stage 5 when P o \ . . . ,P,!, Po
2,. . . ,Pe

2 do not require attention we define
for bCdom(gs) the splitting of dom (gs) with respect to Qe and b to be
dom( gs) = b0, b,, b2 where:

bo = bo,bl,..._tb_e,g~\a0),...,g~\ae), U d"e. with the union taken over all
e' < e for which ds

e. is defined,
bx — b — bQ, and

b2 = dom(g,)_- (60 U bt).
A sentence <j>(b) S WJ+X can be used to attack Qe at stage s + 1 if
\)bQdom(gs),
2)<t>(x) € 3 A r , , and
3) 31 1= 3xL(3x2 A2J(gs(60), x,, 3c2) A -.^(g/feo), x,)) where 60, x1; 3c2 corre-

spond to b0, bt, b2 in the splitting of dom(gj) with respect to Qe and b.
Qe is injured at stage 5 + 1 if gs+i(d%) ¥= gs(d

s
e)- ^

n this c a s e w e saY that ds
e
+' is

undefined. (Otherwise ds
e
+x = lPe.)

CONSTRUCTION. Stage 0. Define g0: fo0 -» a0.
S/age 5 + 1 . Arrange the requirements in order of decreasing priority as Pj , PQ2,

Qo, Pi, P,2, 2i>- • • a n d 1°°^ f° r t n e one of highest priority requiring attention at
this stage. Attack the requirement as follows.

If the requirement is a Pj, attack it by defining gs+l(be) to be the least
an <2 ran(gj ; and gJ + 1 |dom(gj) = gs.

If the requirement is a Pe
2, attack it by defining g~+\(ae) to be the least

bn $ dom(g5); and gs+1 |dom(gj) = g,.
If the requirement is a Qe, we choose the first <j>(b) G W/ + ' which can be used

to attack Qe at this stage and define g J + ] as follows.

gs+i(i>o) = gs(b~o)-
8s+\(b\) — the least sequence a, disjoint from gs(b0) such that 21 t= 3x2 A

2J(g,(60)' «i. ^2) A ->*(^(*o). «i)- T h e r e i s s u c h a n «i ^y property 3 of <f>(b).
gs+i(b2) = the least sequence a2 disjoint from gs(60) U a, such that 21 1=

gs(bQ), a,, a2). There is such an a2 by definition of a,. Define J^+ 1 = fe.

We conclude the proof with the following remarks.
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274 Michael Moses 16]

1) The construction is effective. The only problem is to decide when and how to
attack a requirement Qe. At stage s + 1 we only need consider whether or not one
of the (finite number of) requirements Qe with e < 5 + 1 requires attention. To
do this we run through the (finite number of) sentences in W*+x asking if there
are any that can be used to attack Qe at this stage. This can be done effectively
since 31 is (3 A r , ) -> (r2 - (3 A r,))-decidable.

Once we have decided to attack a requirement Qe, we need to find the
sequences a,, a2. To do this we run through all sequences of the right length from
A until we find sequences that fit the bill. Once again the decidability assumption
on 31 allows us to do this effectively.

2) Each requirement Qe is attacked at most a finite number of times. Assume this
to be true for the requirements Qo,.. .,Qe\- We show it to be true for Qe. Let t
be a stage after which none of Qo,.. .,Qe~\ are ever attacked. Then by the fact
that U ds

e C b0 in the definition of the splitting of dom(gs), Qe is never injured
after this stage. Thus Qe is attacked at most once after stage t.

LEMMA 1. g = lims gs exists, and g: 33 = 91.

PROOF. We show that for any e < u, g is re-defined on be and ae at most a
finite number of times; and therefore lims gs(be) and lim^ g~ \ae) exist. Let t be a
stage after which none of Qo,.. .,(?<,_, are ever attacked. Then, as in the last
proof, since be, g~\ae) G b0, P] and Pj2 are never injured after this stage. Thus
lims8s(b

e) = g,(be) and \imsgjl(ae) = gi\ae). Thereforeg = lim.g, exists.
Since for any e < u, P] and P} are attacked at some stage; g: B -»A is a

surjection.
We now show that for every predicate P in £, 33 N P(b) if and only if

21 1= P(g(b)).
Let 31 1= P(b). Then, by definition of 33, P(b) G 2 ; that is, P(b) £ 2 ' - 2S~]

for some s. By definition of 2*, 31 t= P(gs(b)). If at some further stage t + 1 we
re-define g on b, we make sure that 31 t A2 ' (g , + 1(dom(g,))). Therefore 21 t=
P(g,+ i(b)). Thus_2t tP(g(b)).

Let 21 N P{g{b)). Let s be a stage when g has taken on its final value on b.
Since 31 is r,-r.e., there is a stage / {> s) by which P{g(b)) has been listed as true
in 91. Then, by definition of 2 ' , P(b) G 2 ' C 2. Thus 33 1= P(b).

LEMMA 2. 33 is a Trr.e. structure.

PROOF. By applying to any F,-formula <f> the argument applied to the predicate
P in Lemma 1, we see that <j>(b) G 2 if and only if 31 N <j>(g(b)). Since g: 33 = 91,
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171 Recursive properties of isomorphism types 275

we therefore have 2 = {<*>(£): <K*) G T,, 6 c 5 and 23 t= $(&)}. 2 is r.e. (by
Remark 1), and therefore 33 is r,-r.e.

LEMMA 3. 93 is not T2-r.e.

PROOF. Suppose 93 is F2-r.e. We show that statement 2) of the theorem holds.
Let e be least with We = {<t>(b): <j>(x) G F2, b CB and 93 N $(£)}. Consider a
stage s0 after which none of QQ,...,Qe-\ are ever attacked and PQ,...,P],

PQ,. ..,Pg do not require attention.
Qe is not injured after stage s0. Suppose Qe were attacked at some stage t s* s0

by a sentence <j>(b). Then b =d'e and as <2e is never injured, g,(b) — g(b). Thus
4>(b) G We and 21 1= -i«Kg(i)). Therefore, since g: 93 s 9 l , 33 t= -,<*>(£). This
contradicts the choice of We. Thus £>e is not attacked after stage sQ.

Let b0 be as in the splitting of dom(gJo) with respect to Qe. By the choice of 50,
b0 is the same in the splitting of dom(gi) with respect to Qe for any s > s0.
Therefore_gi([ft0) = g(b0) = a0, say.

Let <}>(b0, b) be a r2-sentence true in 93. We show that there is a 3 A r,-formula
ik(x0, x) such that 93 N i(b0, b) and 31 N VJc(^(a0,3c) ^ <f>(a0,3c)). If ^ (6 0 .^ ) i>
a 3 A r,-sentence, take ^(3c0,3c) = <}>(x0, x) where x0, x correspond to b0, b.
This clearly fits the bill.

If <j>(bQ, b) is a F2 — (3 A f,)-sentence, consider a stage s > s0 of our construc-
tion when

i) <Kfy)> *) G ^ 7 (such a stage exists by choice of We), and
i i )*Cdom(g, ) .

Take ^(x0,3c) = 33c2 A 2s(3c0, x, x2), where 3c0,3c, x2 correspond to b0, bx, b2 in
the splitting of dom(gs) with respect to Qe and fc. Clearly 93 f= ^(fc0, 6). We show
that 31 t= V3c(^(a0,3c) -̂  </>(ao> ^))- Since 5 > s0, g e is not attacked at this stage.
In particular <f>(b0, b) cannot be used to attack Qe at this stage. By i) and ii)
above, this means that <f>(b0, b) does not satisfy property 3; that is, 21 t=
V3<(^(a0, x) -* <j>(a0,3c)).

Thus for every F2-sentence <j>(b0, b) true in 93, there is a 3 A F,-formula
i//(3c0,3c) such that 33 t= $(bQ, b) and 31 1= V3c(«//(a0,3c) -^ *(a0,3c)). Therefore,
for every F2-sentence <t>(a0, a) true in 31, there is a 3 A F,-formula \p(x0, x) such
that 31 t= \j/(a0, a) and 21 1= V3c(^(ao» •*) ~* ^(^o> *))> namely the formula corre-
sponding to <p(b0, g~\d)). Given any <f>(a0, a) true in 21, we can find this
3 A r, -formula effectively using the fact that 91 is (3 A F,) - (F2 - (3 A F,))-
decidable.

This contradicts our hypothesis, thus proving Theorem I.

In Theorem I, F2 was taken to be a set of formulae to simplify notation. The
only property used is that every <£ G F2 is preserved under isomorphisms; that is,

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788700023302
Downloaded from https:/www.cambridge.org/core. IP address: 47.88.87.18, on 17 Jan 2017 at 18:15:23, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1446788700023302
https:/www.cambridge.org/core


276 Michael Moses [s!

if / : 33 ss 31 then SB 1= <j>(b) if and only if 31 1= < K / ( % Any relation R on 31 may
be treated as such a formula by interpreting it in any 33 with / : 93 a 31 as the
relation/^1/? = {f~\d): a 6 R}. We therefore have the following result.

THEOREM V. Let F, be an r.e. set with {Pf. i < u} C F, c Form(£), and F2 a set
{i?,: i < «} of relations on 31. / / 31 is (3 A F,) -> T2-dec, the following are
equivalent.

1) For every Tx-r.e. structure 93 and isomorphism / : 31 ss 93, the relations {//?,-}
are uniformly r.e. on 93.

2) For .some a C A there is an effective procedure which when applied to any
b C A — a and Rt E. F2 such that 31 1= R^a, b) produces a 3 A Tx-formula \p(x, p)
such that 31 1= ^(a, b) and 31 1= Vy(\l>(a, p) -> R,(d, p)).

Consider a language £ with a predicate = interpreted in 31 as the identity
relation. Then the sentences Vy(i//(a, p) -* <f>(d, y)) and Vp, z(\p(d, p) A {a = z)
-» <f>(z, p)) are equivalent in 21. We may therefore replace <j>(d, p) by <t>(y)
throughout the definition of 2 , -» 22-decidabihty and the statement of the
theorem.

In the case F, = {/>: j < w} U {-,/>: / < w} and T2 = F, U {R} Theorem I'
reads as follows.

COROLLARY 1.1 (Ash and Nerode [1]). Let 31 be a structure with predicate =
interpreted as the identity; and R a relation on 21. / / there is an effective procedure
for determining, given any existential formula ^(3c, p) and a C A, whether the
implication \p(d, x) -» R(x) is true in 31, the following are equivalent.

1) R is intrinsically r.e. on 31.
2) For some a C A there is an effective procedure which, when applied to any

b C A — a such that 31 N R(b), produces an existential formula \p(x, p) such that
21 t= \p(d, b) and 31 t= Vy(^(a, p) -> R(p)).

Applying Theorem I to the sets F, = {P-: i < u} U {-.P,: / < w} and F2 —
Form(£) we get

COROLLARY 1.2 (Nurtazin [6]). For a dec. structure 31 the following are equiva-
lent.

1) Every recursive structure isomorphic to 31 is decidable.
2) For some a Q A there is an effective procedure which, when applied to any

b C A — a and formula <j>(x, p) such that 31 1= <t>(d, b), produces an existential
formula \p(x, p) such that 31 t= \^{a, b) and 31 t= \fp(\j/(a, p) -> <j>(a, p)).
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19] Recursive properties of isomorphism types 277

A structure is n-recursive if it is F-r.e. for F the set of all formulae with n or less

alternations of quantifiers; that is, of the form Q\XxQ2x2 • • • Qmxm<$>{xx,.. .,xm)

with m < n,<j> quantifier-free and each Qt one of V, 3.

Taking F, to be this F and F2 - VF, Theorem I gives

COROLLARY 1.3 (Goncharov [3]). For an n + l-rec. structure 21, the following are

equivalent.

1) Every n-rec. structure isomorphic to 21 is n + l-rec.

2) For some a C A there is an effective procedure which, when applied to any

b C A — a andVF,-formula <j>(x, y) such that 21 N <j>(a, b), produces a 3Tx-formula

4>(x, y) such that 21 1= \p(a, b) and 21 1= Vy(»//(£, 9) -> <S>(a, y)).

The next corollary has not appeared in the literature. For F, = {/*,: / < to) and
F2 = F, U -,F, the theorem gives

COROLLARY 1.4. For a 3 A F,-rec. structure 21 the following are equivalent.
1) Every r.e. structure isomorphic to 2t is rec.
2) For some a Q A there is an effective procedure which, when applied to any

b C A — a and quantifier-free formula </>(3c, ?) such that 21 t1 <j>(a, b), produces a
3 A Trformula ip(x,y) such that 21 1= ^{a, b) and 21 t= Vy(\p(a, y) ->• <j>(a, y)).

In this case the 3 A F,-formulae are existential-positive formulae. Further
results may be obtained by applying the theorem to other sets F, and F2.

THEOREM II. Let F be an r.e. set with {/>: /' < w) C F C Form(£). / / 21 is
(3 A F) -> (3 A T)-dec the following are equivalent.

1) Every T-r.e. structure isomorphic to 21 is recursively isomorphic to 21.
2) For some a C A there is an effective procedure which when applied to any

b C A — a produces a 3 A T-formula \p(o, y) which is an atom of the Lindenbaum
algebra 5(Th(2l, a)) such that 21 t= \P(a, b).

PROOF. We first show that 2) => 1). Let 99 be a F-r.e. structure and / : 21 =s 93.
We describe by a back and forth argument a rec. map g: 21 ss 33. At each stage we
define sequences c, , . . . ,cn G A, du...,dn G B and define g: c, -> d{. We ensure
that ct,...,cn and dx,...,dn satisfy the same formulae in 2( and 33.

Let a be the sequence described in 2). Notice that ^(a, y) is an atom of
£(Th(2t, a » if and only if ^ ( / ( a ) , y) is an atom of 5(Th<33, / ( « ) » .

Stage 0. Define g(a) = / (a ) . Clearly a, and g(a) satisfy the same formulae.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788700023302
Downloaded from https:/www.cambridge.org/core. IP address: 47.88.87.18, on 17 Jan 2017 at 18:15:23, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1446788700023302
https:/www.cambridge.org/core


278 Michael Moses [»o]

Stage 2S+,. Suppose we have g defined on a, c , , . . . , cn at this stage by

g(a,cx,...,cn) = f(a),dx,...,dn.

Takecn + 1 to be the least a E A — {a, c,,. . -,cn}. We wish to ivaAdn+l. Apply the
effective procedure described in 2) to c,,...,cn+x to obtain an atom
3x<t>(a,xu...,xn+ux) of B(Th(%,a)) such that % t= 3 ^ ( a , c , , . . . , c ) I + I , x).
T h e r e f o r e 31 ¥ 3xxn+x4>(5, cv... ,cn, x n + x , x ) . Since a,cx,...,cn a n d f(a),
dx,. . . ,dn satisfy the same formulae, we therefore have 93 t=
3xxn+1<f>(/(a), dx,...,dn, xn+x, x). Thus there is a Z? G 2? such that 58 1=
3x<j>(f(d),dl,...,dn,b,x). Since 93 is F-r.e. and therefore 3 A F-r.e., we can
find this b effectively. Define g(cn + 1) = b, that is, b = dn+l. a, cv...,cn+i and
f ( a ) , d v . . . , d n + { s a t i s f y t h e s a m e f o r m u l a e s i n c e 3x<j>(a, x x , . . . , x n + l , x ) i s a n
atom.

Stage 2 s + 2 . Suppose we have g(a, c , , . . . ,cn) = f(a), dv.. .,dn. Take dn+l to be
the least b G B — {/(5), d,,.. . ,c/n}. We wish to find cn+1. Notice that each
sequence b C B — / ( a ) satisfies an atom of U(Th(93, f(a))); namely the one
produced by applying the procedure of 2) iof~x{b). From an r.e. list of sequences
of length n + 1 from A — a, produce an r.e. list of atoms of 2?(Th(2l, a ) ) by
applying the effective procedure of 2) to each sequence. As was noticed previ-
ously, d],...,dn+l satisfies one of these. Since © is 3 A F-r.e. we can find
effectively the atom 3x<j>(a, xx,. . . ,xn+x, x) such that 33 £
33c«K/(a), dx,... ,dn+x, x). Since a, cx,... ,cn and/ (a) , dx,.. .,dn satisfy the same
formulae, arguing as before, there is an a G A such that 21 t=
33c<j>(a, c , , . . . ,cn, a, x). 9t is 3 A F-r.e., and we can therefore find this a effec-
tively. Define cn + 1 = a. Once again, a, c, , . . -,cn+x, and f(d), dx,... ,dn+i satisfy
the same formulae.

This process clearly describes a recursive map g: % = 93.
Notice that in the above proof, at stages 2 i + 1 and 2s+2, we used only the fact

that a, c , , . . . ,cn and/ (a) , </,,... ,</„ satisfy the same 3 A F-formulae. We say that
a formula ^{a, y) is an atom of the 3 A Y-part of 5(Th(, a ) ) if given any
3 A T-formula ^(x, y) if 9f t= 3y(«Wa, 7) A *(a, 9)) then 21 1= V/(^(a, y) ~*

Ha, P)).
Consider the following statement.

2') For some a QA there is an effective procedure which when applied to any
b C A — a produces a 3 A F-formula \p(a, y) which is an atom of the 3 A F-part
of 5(Th<9l, a » such that 21 1= «//(a, b).

Clearly 2) =» 2')- We show that 2') => 2) by showing that the atoms \p(a, y) of
2') are in fact atoms of the whole of 5(Th(2t, a)).
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[li] Recursive properties of isomorphism types 279

Let \j/(d, y) be an atom of 2'). Let a,, a2 C A — a be such that 31 N \p(a, a,)
and 31 E ̂ (a, a2). We show that \p(a, y) is an atom of 2?(Th(3l, a)) by showing
that there is an automorphism g: 31 ss 31 such that g(d) = a and g(a,) = a2- At
stage 0 define g(a, a,) = a, a2, and define the map at stages 2S+, and 2 i + 2 as was
done previously.

This shows that 2) <=> 2').

We now show that -, 2') =>-.!) via a finite injury priority construction. Let 3t
be a (3 A F) -»(3 A F)-dec. structure on rec. universe A — {a0, a , , . . .} satisfy-
ing -, 2'). We shall construct in stages a F-r.e. 33 on rec. universe B = {b0, bu...}
isomorphic but not recursively isomorphic to 9t.

As in Theorem I we shall define at each stage ^ a partial map gs: B -» A so that
g = hm^gj is a surjection from B to A. We shall also define finite sets 1," and As

of 3 A F-sentences \p(b) with b C B. 98 is defined to be the structure on B
satisfying all the quantifier-free sentences in 2 = Us 2 J . We will ensure that
g:93 = 3l.

Let <j>0, (/>,,... be a list of all 3 A F-sentences <j>(b) with b C B. Let/0, / , , . . . be
a list of all partial rec. functions from B to A. As in Theorem I, the idea is to
diagonalize over the/e: e < w to ensure that none of them is an isomorphism from
99 to 31.// is the subset of fe computed by stage s.

Our requirements are:
P]:be Gdom(g),
P}\ ae G ran(g),
P]\ If <t>e = <t>e(b), say, and 93 1= <j>e(b), then <f>e(b) E 2 , and

Qe: fe: 99 -» 31 is not an isomorphism.

DEFINITIONS. The four definitions for P] and P* are as in Theorem I.
Pj requires attention at stage s + \ if <f>e = <$>e(b) say, has b Q dom(gs) and

<t>e $ 2 J U AJ.
In order to meet the requirements Qe we define at some stages s sequences

ds
e C B with the intention that if fe is a total function, de = l im^* exists, and

there is a formula «(ic) E 3 A F such that precisely one of 93 1= 6(de), SI 1=

Qe requires attention at stage s + 1 if ds
e is undefined.

g c « injured at stage s + 1 if gJ+ ,(d;0 ^ gs(d0- ^n t n i s c a s e w e s a v

undefined. (Otherwise ds
e
+' = ^ . )

At any stage i when P(],...,P*, PQ,. . . ,Pe
2 do not require attention we define

the splitting ofdom(gs) with respect to Qe as dom(gs) = b0, bt, b2 where:
b0 - b0, />,,..., be,g;\a0),...,g;\ae), U ds

e, (as in Theorem I);
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280 Michael Moses [ 1 2 ] 

ft, = ( d o m ( / / + 1 ) n dom( g j ) ) - ft0; and 
b2 = dom(gs)-(b0U_bl). 
A 3 A T-sentence <J>(ft) can be used to attack Qe at stage s + 1 if 
1) ft C d o m ( g i ) and ft0 C dom_(// + 1 ) ; 
2) 21 1= 3it„ x2( A 2 * A *(g,(ft0), jf„ 3c2)), and 
3) 21 1= ^(Vx,(3x2 A 2*(gJ(ft0)_, x,, x 2 ) 3 x 2 ( A 2 * A *( g j ( f t 0 ) , x„ jf2)))) 

where fr0, A: , , JC 2 correspond to ft0, ft,, ft2 in the splitting of dom(gJ with respect 
to Qe. 

C O N S T R U C T I O N . Stage 0. Define g 0 : b0 -> aQ; 2° = A0 = { }. 
Stage 5 + 1 . Arrange the requirements in order of decreasing priority as 

PQ, PQ, PQ, P{, Pf, P , 3 , . . . and look for the one of highest priority requiring 
attention at this stage. 

If the requirement is a P] or P^, attack it as was done in Theorem I; and define 
— 2 s and A s + 1 = { }. If the requirement is a Pe

3 , check the requirements Qe. 
with e' < e to see if there is one that requires attention at this stage, such that <j>e 

can be used to attack Qe. at this stage. If there is none, attack P^ as follows. (Let 
4>e = <fc(ft>) If 2t N <j>e(gs(b)), define 2 S + 1 = 2s U {<*>,} and A J + 1 = AJ. If 21 1= 
-,<>e(g/ft)), define A s + 1 = As U {<f>e} and 2 i + 1 = 2 s . In both cases define gs+l = 
g,-

If there is a 2,,- with e' < e, requiring attention such that <j>e(b) can be used to 
attack Qe, at this stage, then attack Qe, as follows. 

Case l._If 31 ¥_3x2( AS* A <k(/ ; + 1 ( f t 0 ) , # + 1 ( f t , ) , jc2)), where ft0, ft,, x 2 corre­
spond to ft0, ft,, ft2 in the splitting of d o m ( g i ) with respect to Qe,, then define gs+, 
as follows. 

&+i(*o) = &(*<>)• 
g i + , ( f t , ) = the least sequence a, disjoint from g^fto) such that 21 t= 3 x 2 ( A 2 s 

A <j>e(gs(b0), a,, 3c2)). There is such an a, by property 2 of </>e(ft). 
gs+l(b2) = the least sequence a2 disjoint from gs(b0) U a, such that 31 1= A 2 J 

A <t>e(gs(b0), d}, a2). There is such an a2 by definition of av 

Case 2. If 21 1= 33c 2(A2* A * e ( / / + 1 ( 6 0 ) J / + , ( f t 1 ) , x2)\ define g i + 1 as follows. 
gs+M = g,(ft0)-

= the l e a s t sequence a, disjoint from gs(b0) such that 21 1= 3x 2 A 
2 i (g i ( f t 0 ) , a „ x 2 ) _ A - , ( 3 x 2 ( A 2 J A ^(g/fto), a „ x2))). There is such an a, by 
property 3 of </>,,(ft). 

gJ+,(ft~2) = the least sequence d2 disjoint from gs(fto) u «i s u c n that 21 E 
A2* (g, ( f t 0 ) , f l„a 2 ) . 

In both cases define 2 I + 1 = 2 J , A J + 1 = { } and ds

e

+l = ft0, ft,. 

We conclude the proof with the following remarks. 
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[13] Recursive properties of isomorphism types 281

1) The construction is recursive. The proof is similar to the corresponding proof
in Theorem I.

2) Each requirement Qe is attacked at most a finite number of times. The proof
is as in Theorem I.

LEMMA 1. g = lim5 gs exists and g: 23 s= 31.

PROOF. Arguing as in Lemma 1 of Theorem I, g = lims gs exists and is a
surjection from B to A.

We show that for every predicate P in £, 33 N P(b) if and only if 31 1= P(g(b)).
If 33 t P(b), just as in Lemma 1 of Theorem I, 91 t= P(g(b)).

Let 31 t= P(g(b)) and P(b) — <f>e. Consider the stage s at which g takes on its
final value on b. By the construction, sincegs ¥= g s - i , A5 = { }. Since 31 t= P(g(b)),
P(b) $. A' for any t s* s. If P(b) £ 2*, then P* requires attention at stage s + 1,
and at some further stage is attacked. In either case <t>e(b) £ 2 , and therefore

LEMMA 2. 33 w a T-r.e. structure.

PROOF. By applying to any 3 A F-formula <j> the argument applied to the
predicate P above, we see that <j>(b) £ 2 if and only if 91 N <l>(g(b)). g: 33 s 31;
and by Remark 1, 2 is an r.e. set of 3 A F-sentences <j>(b). Thus 33 is a 3 A F-r.e.
structure.

LEMMA 3. 33 is not recursively isomorphic to 91.

PROOF. Suppose 33 is recursively isomorphic to St. We show that statement 2')
is true. Let e by least with/,,: 3t =s 33.

Consider a stage s0 after which none of Q0,...,Qe-i are ever attacked and
PQ,...,P*, PQ,...,P? do not require attention. Let b0 be as in the splitting of
dom(gi ) with respect to Qe. By the choice of s0, b0 is the same in the splitting of
dom(gJ) with respect to Qe for any s > s0. Therefore gSo(bo) = g(b0) = a0, say.

Qe is not injured after stage s0. Suppose Qe were attacked at some stage t >sn

by a sentence <f>(b). Then d'e would be defined; and as Qe is never injured, de = d'e
and g(de) = g,(de). Consider the formula d(x) = 3y( A 2 ' A <j>(x, y)) where x
corresponds to b0, bt and y to b2 in the splitting of dom(gr) with respect to Qe.
Since g,(b0, bt) = g(b0, bx) and g: 33 = 9t we have that precisely one of 33 t= 0{de),
91 t= 6{fe(de)) is true. This contradicts the choice of fe. Thus Qe is not attacked
after stage s0.
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282 Michael Moses U")

Given any c C B — b0, perform the effective construction up to a stage s s* s0

when J j U c C dom(gj n dom(//). Consider the 3 A T-formula i/<(3c, y) = 3z
A Hs(x, y, z) where 3c, y, z correspond to b0, c and dom(g^) — (b0 U c) respec-
tively. Clearly 93 1= ^(fc0, c). We show that ^(ao> >*) ' s a n a t o m °^ t n e 3 ^ F-part
offl(Th(3I,a0».

Consider the first stage m + 1 > s when 2 m + l ¥= 2J ; let 2 m + 1 - 2 s = {a(b)}.
By definition of attack on P3, this means that 31 t= o(gm(b)). This implies that the
first two conditions in the definition of "a(b) can be used to attack Qe at stage
m + 1" are satisfied. However, Qe is not attacked at stage m + 1. Therefore,
condition 3 fails; that is,

31 1= V3c,(3x2 A 2 ' (a 0 , *i , x2) - 3x2( A 2 J A a(a0 , Jc,, Jc2)))

where 3c,, x2 correspond to bv b2 in the sphtting of dom(gm) with respect to Qe.
Since c C i , w e may deduce from this that 31 t= Vj;(3F A I.s(d0, y, x') -» 33c' A
2m + 1(a0 , _y, 3c')) where y, x' correspond to c, dom(gm) — (b0 U c). Applying this
argument repeatedly, we see that for any t > s W. t Vy(33c' A 2J(a0, y, 3c') -»
33c' A 2'(a0, y, 3c')) where y, 3c' correspond to c, dom(g,) — (bQ U c). Call this
property #.

Consider any 3 A r-formula<J>(a0, y) consistent with \p(d0, y). If </>(a0, c) e 2 '
for some f > s, by property #, 31 N Vy(^(a0, y) -+ <j>(d0, y)). If «^(a0, c) ^ 2,
then (by virtue of the fact that A is reduced to { } at every stage a requirement Pl

or P 2 is attacked) there is a stage t > s at which the P3 corresponding to <j>(d0, c)
is the requirement of highest priority requiring attention. Since <j>(d0, y) is
consistent with ^(a0, y); by property #, the first two conditions in the definition
of "<J>(a0, c) c a n be used to attack Qe at stage / " are satisfied. However, Qe is not
attacked at stage t. Therefore, condition 3 fails. By property # this implies that
3t t= Vy(\p(d0, y) -» 4>(d0, y)). Thus *j/(d0, y) is an atom of the 3 A F-part of
B(Th(%,d0)).

We have described an effective procedure which when applied to any c C B — b0

produces an atom ip(d0, y) of the 3 A F-part of 5(Th(3I ,a o » , such that
39 N 4>{b0, c). Notice that any d Q A — d0 satisfies one of these atoms; namely,
the one corresponding to g~ \d). Apply this effective procedure to an r.e. list of
all sequences in B — b0 to obtain an r.e. list of such atoms. Given any d C A — d0

find an element from this list that d satisfies. Since 3t is 3 A F-rec, we can
conduct the search effectively.

Thus statement 2') is true, and therefore so is Theorem II.

In the proof of Lemma 3, all that was used to arrive at a contradiction is that
for some e < to, B C dom(/e) and fe: 93 ->/<,(©) is an isomorphism. Thus we
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[is] Recursive properties of isomorphism types 283

actually constructed a F-r.e. 33 isomorphic to 21 but not recursively embeddable in
21.

Under the assumption that 2) is false we can in fact construct a countable
number of F-r.e. structures 33 0, 33, , . . . such that for each /, 93, s 2t, and for / ¥=j,
33, is not recursively embeddable in 93y.

The 93, are constructed on universe B = {b0, bx,...} as follows. At each stage s
we define, for each i < w, partial maps gf: B -* A and finite sets 2*, A* of
3 A F-sentences <j>(b) with b C B. 33, is the structure on B satisfying the
quantifier-free sentences in 2,. g, will be an isomorphism from 33,- to 21.

Let/0, / , , . . . be a list of all partial recursive functions from B to B.
Our requirements are:

Px
e,: be G dom(g,),

Pe
2y. ae G ran(g,),

Pi,: If <j>e = $e(b) and 33, 1= 4>e(b), then <t>£b) G 2,, and
Qe ij: fe: 33,- -» 33; is not an embedding.
The definitions are obtained by appropriate modifications to the previous

definitions, as follows.
The splitting ofdom(gf) with respect to Qe, . is

b0 = as before,
bl = (dom(g/) n / / + ' '(dom(g;))) - b0, and

Sentence <j>(b) can be used to attack Qe<ij at stage s + 1 if
1) b c dom(g/) and b0 C /;+1"'(dom(g)));
2) and 3) are obtained from the previous ones by substituting g,1 for gs.
Impose some order on the requirements and perform the same construction.
Decide if 21 t= <t>e(g-(b)) in order to attack P*t, and distinguish between the two

cases in the attack of Qe>jj by asking if

21 1= 3ic2(A2* A * , ( g ; ( / / + 1 ( V A I ) ) , x2)).

The definition of g / + l is obtained by replacing gs by g,s and 2 J by 2J in the
previous definition.

The remarks are proved as in the previous case.
We therefore have

THEOREM II'. //93 is (3 A F) -> (3 A T)-dec, the following are equivalent.
1) Statement 2) of Theorem II is false.
2) There is a T-r.e. structure 33 isomorphic to 21 but not recursively embeddable in

21.
3) There are countably many T-r.e. structures 33O, 33, , . . . isomorphic to 21, such

that if i ¥=j, 93, is not recursively embeddable in 93;.
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2 8 4 Michael Moses [16]

By applying Theorem II to T = Form(£), we get

COROLLARY 2.1 (Nurtazin [6]). For a dec. structure 91 the following are equiva-
lent.

1) 91 is decidably categorical.

_ 2) For some a QA there is an effective procedure which when applied to any
b QA - djroduces a formula \p(a, y) which is an atom ofB(Th(%, a)), such that
31 1= xP(a, b).

For T = {/>,: i < w} U {-,/>: / < u} the theorem gives

COROLLARY 2.2 (Goncharov [3]). For a 2-rec. structure 9T the following are
equivalent.

1) 31 is recursively categorical.
2) For some a QA there is an effective procedure which when applied to any

b C A — a produces an existential formula \f/(a, y) which is an atom of
5(Th(9I, a)), such that 31 1= $(a, b).

The next corollary is new to the literature. For T = {/>: i < w) we get

COROLLARY 2.3. For a 2-rec. structure 3t the following are equivalent.
1) Every r.e. structure isomorphic to 9t is recursively isomorphic to 3t.
2) For some a Q A there is an effective procedure which when applied to any

bQ A — a produces an existential-positive (3 A T) formula ^{a, y) which is an
atom o/5(Th(9I, a)), such that 21 t= $(a, b).

In this last corollary, the requirement that 31 is 2-rec. is stronger than is
necessary, that is, (3 A T) -> (3 A r>decidability.

Further results may be obtained by applying the theorem to other sets F; for
example the set of formulae with n alternations of quantifiers.

Consider a structure 91 on A = {a0, au...}. For each ; < u define a unary
relation £, on 3( by: 31 t= £,-(ay-) if and only if a, = Oj.

Let T be an r.e. set with {Pt: i < u} C T C Form(£), and T = {£,: /" < w}. We
show that if 31 is F-r.e., the following are equivalent.

i) Every isomorphism from 91 to a F-r.e. structure is a rec. isomorphism.
ii) For every T-r.e. structure 93 and isomorphism/: 91 =%$, the relations {/£,}

are uniformly r.e. on 93.
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PROOF. Clearly i) => ii).
Let 93 be a F-r.e. structure, and/: 91 s 33. For a, G^we wish to find/(a,). Use

the fact that /£, is r.e. to find b G B such that 33 t= fEt(b). This means that
31 N EXrKb)); that is,/- '(*) = «,- Thus b=f(a,).

Notice that ii) is statement 1) of Theorem I' for F, = F and F2 = F. Applying
this theorem to F and F we get

THEOREM III. Let Y be an r.e. set with {/",-: i < w} C F C Form(fi) and f as
above. If% is 3 A (F U Y)-rec.\ the following are equivalent.

1) Every isomorphism from % to a Y-r.e. structure is a recursive isomorphism.
2) For some a Q A there is an effective procedure which when applied to any

ai G A — a produces a 3 A Y-formula \j/(x, y) such that 91 1= \p(a, a,) if and only if
a, = dj.

In the case when F = {/*,: i < «} U {-..P,: i < to}, Theorem III gives

COROLLARY 3.1 (Ash and Nerode [1], Goncharov [3]). For a l-rec. structure 91,
the following are equivalent.

1) Every isomorphism from % to a rec. structure is a rec. isomorphism.
2) For some a C A there is an effective procedure which when applied to any

b G A — a produces an existential formula \p(x, y) such that

91 ¥ V(>p(a,y) **y = b).

Theorem III may be applied to other sets F to produce similar results. Some
interesting cases are F ={/>,. : /< w} (to get a result for r.e. structures), and F the
set of formulae with n alternations of quantifiers.

4. Addendum

The characterizations presented in the previous sections are all subject to
certain decidability assumptions. Ash and Nerode [1] discuss some cases in which
the decidability assumption in Theorem I' may be reduced. Goncharov [4] has
shown that in the general case these decidability assumptions cannot be com-
pletely removed.

Theorem II has been discussed in particular cases. LaRoche proved that a
recursive Boolean algebra is recursively categorical if and only if it has a finite
number of atoms. (A proof of this result may be found in Remmel [7].) Remmel
[8] showed that a recursive linear order is recursively categorical if and only if it
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has a finite number of successivities. These conditions are equivalent, in these
cases, to statement 2) of Theorem II. However, the results do not follow from
Theorem II as there are linear orders and Boolean algebras which do not have any
structures in their isomorphism type with the decidability required in Theorem II.
Goncharov and Dzgoev [2] have generalized these results to produce a condition
(branching) sufficient for a rec. structure not to be recursively categorical.
Goncharov [5] uses this condition to characterize recursively categorical Abelian
/^-groups, and a similar condition to characterize recursively categorical structures
in a language consisting only of unary predicates.
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