期刊论文详细信息
Proceedings of the Edinburgh Mathematical Society
THE RELATIVE PICARD GROUP OF A COMODULE ALGEBRA AND HARRISON COHOMOLOGY
S. Caenepeel1 
[1] T. Guédénon
关键词: Primary 16W30;    Picard group;    coring;    Harrison cohomology;   
DOI  :  10.1017/S0013091504000549
学科分类:数学(综合)
来源: Cambridge University Press
PDF
【 摘 要 】

Let $A$ be a commutative comodule algebra over a commutative bialgebra $H$. The group of invertible relative Hopf modules maps to the Picard group of $A$, and the kernel is described as a quotient group of the group of invertible group-like elements of the coring $Aotimes H$, or as a Harrison cohomology group. Our methods are based on elementary $K$-theory. The Hilbert 90 theorem follows as a corollary. The part of the Picard group of the coinvariants that becomes trivial after base extension embeds in the Harrison cohomology group, and the image is contained in a well-defined subgroup $E$. It equals $E$ if $H$ is a cosemisimple Hopf algebra over a field.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040531352ZK.pdf 214KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:13次