Proceedings Mathematical Sciences | |
Existence of positive weak solutions for (ð‘, ð‘ž)-Laplacian nonlinear systems | |
Samira Ala3  G A Afrouzi2  A Niknam1  | |
[1] Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran$$;Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran$$;Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran$$ | |
关键词: ð‘-Laplacian systems; sub-supersolution; positive weak solutions.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
We mainly consider the existence of a positive weak solution of the following systemegin{equation*}left{egin{matrix}-ð›¥_p u + |u|^{p-2} u = 𛾠[g (x) a(u)+ c(x) f (v)], quad ext{ in } ð›º,-ð›¥_q v + |v|^{q-2} v = 𜇠[g (x) b(v)+ c(x) h (u)], quad ext{ in } ð›º,hspace{3cm} u = v = 0, hspace{3.8cm} ext{ on } 𜕠, ð›º,end{matrix}ight.end{equation*}where $ð›¥_p u = ext{ div}(|abla_u|^{p-2} abla_u), p, q > 1$ and $ðœ†, , ðœ‡$ are positive parameters, and $𛺠subset R^N$ is a bounded domain with smooth boundary $𜕠ð›º$ and $g, , c$ are nonnegative and continuous functions and $f, h, a, b$ are $C^1$ nondecreasing functions satisfying $a(0), b(0) ≥ 0$. We have proved the existence of a positive weak solution for ðœ†, 𜇠large when$$limlimits_{x → ∞} frac{f[M (h(x))^{frac{1}{q-1}}]}{x^{p-1}} = 0$$for every ð‘€ > 0.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040507162ZK.pdf | 84KB | download |