Proceedings Mathematical Sciences | |
Limit law of the iterated logarithm for ðµ-valued trimmed sums | |
Yuyang Qiu3  Yeling Tong1  Ke-Ang Fu2  | |
[1] $$;School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 00, China$$;Zhejiang Institute of Traditional Chinese Medicine, Hangzhou 00, China$$ | |
关键词: Banach space; trimmed sums; the limit law of the iterated logarithm.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Given a sequence of i.i.d. random variables ${X,X_{n};n≥ 1}$ taking values in a separable Banach space $(B,|cdot |)$ with topological dual ðµ*, let $X^{(r)}_{n}=X_{m}$ if $| X_{m}|$ is the ð‘Ÿ-th maximum of ${| X_{k}|; 1≤ k≤ n}$ and $^{(r)}S_{n}=S_{n}-(X^{(1)}_{n}+cdots+X^{(r)}_{n})$ be the trimmed sums when extreme terms are excluded, where $S_{n}=sum^{n}_{k=1}X_{k}$. In this paper, it is stated that under some suitable conditions,$$limlimits_{n→ ∞}frac{1}{sqrt{2log log n}}maxlimits_{1≤ k≤ n}frac{| {}^{(r)}S_{k}|}{sqrt{k}}=ðœŽ(X)quadext{a.s.,}$$where $ðœŽ^{2}(X)=sup_{fin B^{*}_{1}}ext{sf E}f^{2}(X)$ and $B^{*}_{1}$ is the unit ball of ðµ*.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040507146ZK.pdf | 65KB | download |