期刊论文详细信息
Proceedings Mathematical Sciences | |
An Engel condition with an additive mapping in semiprime rings | |
Joso Vukman1  Maja FoÅ¡ner2  Nadeem Ur Rehman3  | |
[1] Department of Mathematics, Physics and Mechanics, University of Maribor, Gosposvetska , 000 Maribor, Slovenia$$;Faculty of Logistics, University of Maribor, Mariborska cesta , 000 Celje, Slovenia$$;Department of Mathematics, Aligarh Muslim University, Aligarh 0 00, India$$ | |
关键词: Prime ring; semiprime ring; additive mapping; derivation; commuting mapping; centralizing mapping; functional identity.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
The main purpose of this paper is to prove the following result: Let ð‘› > 1 be a fixed integer, let ð‘… be a ð‘›!-torsion free semiprime ring, and let $f : R → R$ be an additive mapping satisfying the relation $[f (x), x]_{n} = [[... [[f(x),x],x],...], x] = 0$ for all $x in R$. In this case $[f(x), x] = 0$ is fulfilled for all $x in R$. Since any semisimple Banach algebra (for example, ð¶* algebra) is semiprime, this purely algebraic result might be of some interest from functional analysis point of view.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040507112ZK.pdf | 104KB | download |