期刊论文详细信息
Proceedings Mathematical Sciences
An Engel condition with an additive mapping in semiprime rings
Joso Vukman1  Maja FoÅ¡ner2  Nadeem Ur Rehman3 
[1] Department of Mathematics, Physics and Mechanics, University of Maribor, Gosposvetska , 000 Maribor, Slovenia$$;Faculty of Logistics, University of Maribor, Mariborska cesta , 000 Celje, Slovenia$$;Department of Mathematics, Aligarh Muslim University, Aligarh 0 00, India$$
关键词: Prime ring;    semiprime ring;    additive mapping;    derivation;    commuting mapping;    centralizing mapping;    functional identity.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

The main purpose of this paper is to prove the following result: Let 𝑛 > 1 be a fixed integer, let 𝑅 be a 𝑛!-torsion free semiprime ring, and let $f : R → R$ be an additive mapping satisfying the relation $[f (x), x]_{n} = [[... [[f(x),x],x],...], x] = 0$ for all $x in R$. In this case $[f(x), x] = 0$ is fulfilled for all $x in R$. Since any semisimple Banach algebra (for example, 𝐶* algebra) is semiprime, this purely algebraic result might be of some interest from functional analysis point of view.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040507112ZK.pdf 104KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:7次