Proc. Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 4, November 2014, pp. 497-500.
© Indian Academy of Sciences

An Engel condition with an additive mapping in semiprime rings
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Abstract. The main purpose of this paper is to prove the following result: Letn > 1
be a fixed integer, let R be a n!-torsion free semiprime ring, and let f : R — R be an
additive mapping satisfying the relation [ f(x), x], = [[...[[f(x),x],x],...],x] =0
for all x € R. In this case [ f(x), x] = 0 is fulfilled for all x € R. Since any semisimple
Banach algebra (for example, C* algebra) is semiprime, this purely algebraic result
might be of some interest from functional analysis point of view.
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Throughout, R will represent an associative ring with a centre Z(R). A ring R is n-torsion
free, where n > 1 is an integer, in case nx = 0,x € R, implies x = 0. As usual the
commutator xy — yx will be denoted by [x, y]. Set [y, x]1 = [y, x] forany x, y € R,
and forn > 1, let [y, x], = [[y, x]»—1, x]. Recall that a ring R is prime if fora, b € R,
aRb = {0} implies that either a = 0 or b = 0, and is semiprime if a Ra = {0} implies
a = 0. We denote by C, Q and RC C Q the extended centroid, the maximal right ring
of quotients and a central closure of a semiprime ring R, respectively. For the explanation
of C, Q and RC we refer the reader to [3]. We denote by char(R) the characteristic of
a prime ring R. An additive mapping D of a ring R into itself is called a derivation if
D(xy) = D(x)y 4+ xD(y) holds for all pairs x, y € R. A mapping f of a ring R into
itself is called centralizing on R if [ fx), x] € Z(R) holds for all x € R. In the special
case, when [f(x), x] = 0 holds for all x € R the mapping f is said to be commuting
on R. A classical result of Posner (Posner’s second theorem) [12] states that the existence
of a nonzero centralizing derivation on a prime ring forces the ring to be commutative.
Posner’s second theorem in general cannot be proved for semiprime rings as the following
example shows. Take prime rings R, Ry, where R is commutative, and set R = R; ®R».
Let D1 : Ry — R; be a nonzero derivation. A mapping D : R — R, defined by
D((r1,r2)) = (D1(r1),0) is then a nonzero commuting derivation. It is not difficult to
show that if D : R — R is a commuting derivation on a semiprime ring R, then D maps
R into Z(R).
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It is our aim in this paper to prove the following result.

Theorem 1. Let n > 1 be a fixed integer, let R be a n!-torsion free semiprime ring, and
let f : R — R be an additive mapping satisfying the relation

[f(x),x]n =0 ey

forall x € R. In this case, f is commuting on R.

In case n = 2, the above result reduces to Theorem 4 of [16]. Since any semisimple
Banach algebra is semiprime (for example, C* algebra), Theorem 1 might be of some
interest from functional analysis point of view.

Let us see in some more details the background and the motivation of Theorem 1.
Vukman [13] proved extensions of Posner’s second theorem. More precisely, he proved
the following result: Let R be a prime ring with char(R) # 2. Suppose there exists a
nonzero derivation D : R — R, such that the mapping x — [D(x), x] is commuting
on R. In this case R is commutative. In [14], Vukman proved the following result: Let
R be a prime ring with char(R) # 2,3, 5. Suppose there exists a nonzero derivation
D : R — R, such that the mapping x — [[D(x), x], x] is centralizing on R. In this case,
R is commutative (see also [15]).

Using the theory of differential identities, Lanski [11] fairly generalizes the results we
have just mentioned by proving the following result: Let / be a nonzero ideal of a prime
ring R, and let D : R — R be a nonzero derivation, such that [D(x), x], = 0 holds
for all x € I and some fixed integer n > 1. In this case, R is commutative. In the same
paper, Lanski proved the result which tells: Let R be a prime ring, L a noncommutative
Lie ideal of R and D : R — R a nonzero derivation. If [D(x), x], = 0 holds for all
x € L and some fixed integer n > 1, then char(R) = 2 and R € M, (F) for [ a field,
so [D(x), x]» = 0. BreSar [5] has proved that in case an additive mapping f : R — R,
where R is a noncommutative prime ring, is commuting on R, then f is of the form
f(x) = Ax + ¢(x), where A € C is some fixed element, and ¢ : R — C is an additive
mapping. With this result, the development of the theory of functional identities (BreSar—
Beidar—Chebotar theory) started. We refer the reader to [7] for an introductory account of
the BreSar—Beidar—Chebotar theory. For full treatment of this sophisticated and powerful
theory, we refer the reader to [8]. In [4], BreSar proved that in case we have an additive
mapping f : R — R, where R is a prime ring with char(R) # 2, such that [f(x), x]2 =0
forallx € R, then f is commuting on R. This result has been generalized to 2-torsion free
semiprime rings in [16]. Using the theory of functional identities Bresar [6] has proved
the following theorem: Let R be a prime ring and let f : R — R be an additive mapping.
Suppose there is a fixed integer n > 1 such that [ f(x), x], = 0 holds for all x € R. If
char(R) = 0 or char(R) > n, then f is commuting on R.

The work of Beidar et al. [2] should be mentioned. They studied an additive mapping
f I — A satisfying the relation

[[..[[f(x), x™],x™],...],x"]1=0

for some fixed positive integers ny, na, ..., ng, and all x € I, where I is a right ideal
of a prime ring R and A = RC is a central closure of R. They showed that in case
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either char(R) = 0 or char(R) > n; + np 4+ --- + n; a mapping f is commuting
on R.

Proof of Theorem 1. As observed above, we may assume that n > 2. In the light of com-
ments referring to [16] we shall begin the proof. According to the semiprimeness of R
there exists a family of prime ideals { P, | « € I} such that Ny P, = {0}. Without loss of
generality, we may assume that for prime rings R, = R/P,, char(R,) > n (see page 459
of [1]). By C we shall denote the extended centroid of the prime ring R/ P, for P = P,
for some «, and by A the central closure of R/P. One can consider A as a vector space
over the field C, which can be regarded as a subspace of A. Thus there exists a subspace
B of A such that A = B + C. We shall denote by  the canonical projection of A onto
B. Let us fix some P = Py, o € I. We will show that [ f(x),x] € P forall x € R.
For x € R, we shall write x for the cosetx + P € R/P. Writex + p,x € R, p € P,
instead of x in (1). It follows that [ f(p), x], € P forall x € R and p € P. Therefore
[f(p), x], =0 forall x € R. In particular,

(Lf(p), X], X]p—1 = 0. 2

Define a mapping D : R/P — R/P by D(x) = [f(p), x], which is called an inner
derivation on R/ P. Hence (2) can be written as

[D(X), X]p-1=0

for all x € R/P. Using [6, Theorem], it follows that [D(x), x] = 0. Posner’s second
theorem implies [ f(p), x] = O for all x € R, p € P, which means that f(p) lies
in the centre of R/P. In particular, we have w f(p) = 0. It follows that the mapping
f:R/P — A, f(x) = mf(x) is well defined. It is easy to verify that f is additive
and satisfies [ f(X), ¥], = O for all x € R. Using Theorem 1.1 of [2], it follows that
[ f (x), x] = 0, which in turn implies [ f (x), x] € P, as desired. The proof is completed.

Posner’s first theorem [12], which states that compositum of two nonzero derivations
on a prime ring with characteristic different from two cannot be a derivation, in general
cannot be proved for semiprime rings. However, in case we have a semiprime ring, one
can prove the following result (Lemma 1.1.9 of [10]): Let R be a 2-torsion free semiprime
ring, and let D, G : R — R be derivations such that D?(x) = G(x) holds for all x € R.
In this case, D = 0. This result was the motivation for the following result proved by
Vukman [15]: Let R be a 2-torsion free semiprime ring, and let D,G : R — R be
derivations, such that the mapping x —> D?(x) 4 G(x) is centralizing on R. In this case,
D and G are commuting on R. The corollary below generalizes Vukman’s result we have
just mentioned.

COROLLARY 2

Let n > 1 be a fixed integer, let R be a n!-torsion free semiprime ring, and let D, G :
R — R be derivations satisfying the relation [D*(x) + G(x), x], = 0 forall x € R. In
this case, D and G map R into Z(R).

Proof. Since all the assumptions of Theorem 1 are fulfilled, one can conclude that the
mapping x —> D?(x) + G(x) is commuting on R, whence it follows by Theorem 4
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in [15] that D and G are both commuting on R. Since any commuting derivation on a
semiprime ring maps the ring into its centre (see, for example, the end of the proof of
Theorem 2.1 in [17]), the proof of the corollary is complete. O

In case n = 2, Corollary 2 has been recently proved by Fosner and Vukman in [9].
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