期刊论文详细信息
Proceedings Mathematical Sciences
On Quadratic Variation of Martingales
Rajeeva L Karandikar2  B V Rao1 
[1] $$;Chennai Mathematical Institute, H, SIPCOT IT Park, Siruseri 0 0, India$$
关键词: Doob–Meyer decomposition;    martingales;    quadratic variation.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

We give a construction of an explicit mapping$$Psi: D([0,∞),mathbb{R})→ D([0,∞),mathbb{R}),$$where $D([0,∞), mathbb{R})$ denotes the class of real valued r.c.l.l. functions on $[0,∞)$ such that for a locally square integrable martingale $(M_t)$ with r.c.l.l. paths,$$Psi(M.(𝜔))=A.(𝜔)$$gives the quadratic variation process (written usually as $[M,M]_t$) of $(M_t)$. We also show that this process $(A_t)$ is the unique increasing process $(B_t)$ such that $M_t^2-B_t$ is a local martingale, $B_0=0$ and$$mathbb{P}((𝛥 B)_t=[(𝛥 M)_t]^2, 0 < ∞)=1.$$Apart from elementary properties of martingales, the only result used is the Doob’s maximal inequality. This result can be the starting point of the development of the stochastic integral with respect to r.c.l.l. martingales.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040507108ZK.pdf 207KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:23次