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On quadratic variation of martingales
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Abstract. We give a construction of an explicit mapping

� : D([0,∞),R) → D([0,∞),R),

where D([0,∞),R) denotes the class of real valued r.c.l.l. functions on [0,∞) such
that for a locally square integrable martingale (Mt ) with r.c.l.l. paths,

�(M.(ω)) = A.(ω)

gives the quadratic variation process (written usually as [M,M]t ) of (Mt ). We also
show that this process (At) is the unique increasing process (Bt ) such that M2

t − Bt is
a local martingale, B0 = 0 and

P((�B)t = [(�M)t ]2, 0 < t < ∞) = 1.

Apart from elementary properties of martingales, the only result used is the Doob’s max-
imal inequality. This result can be the starting point of the development of the stochastic
integral with respect to r.c.l.l. martingales.
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1. Introduction

The Doob–Meyer decomposition of square of a (square integrable) martingale was a
landmark result that led to the development of stochastic integration with respect to a
martingale (as outlined by Doob). Meyer [7, 8] showed that there exists a unique natural
increasing process (At ) such that A0 = 0 and M2

t − At is a martingale. This decompo-
sition plays a central role in the theory of stochastic integration [9, 10]. There have been
several attempts, including in recent times, at giving simpler proofs of the Doob–Meyer
decomposition for pedagogical reasons (see [1, 2, 11]). In every exposition of stochastic
integration for semimartingales (which may have jumps), the Doob–Meyer decomposition
remains the first important step. The unusual definition of the natural increasing process
due to Meyer lead to further study and was characterized to be the same as a predictable
increasing process.

Let (Mt ) be a square integrable martingale with respect to a filtration (Ft ). The unique
predictable increasing process (At ) such that A0 = 0 and M2

t −At is a martingale has been
called the compensator of M2

t also the predictable quadratic variation of the martingale
M and has subsequently been denoted as 〈M,M〉t .
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For a simple predictable process f given by

ft (ω) =
m−1∑

j=0

aj (ω)1(sj ,sj+1](t),

where aj is a Fsj measurable bounded r.v. for 0 ≤ j < m; 0 = s0 < si < · · · < sm,

m ≥ 1, the stochastic integral can be defined as

Xt =
∫ t

0
f dM =

m−1∑

j=0

aj (Mt∧sj+1 −Mt∧sj ).

It is easy to check that (Xt) is a martingale and using that M2
t − 〈M,M〉t is a martingale,

one checks that X2
t − Bt is a martingale, where

Bt =
m−1∑

j=0

a2
j

(〈M,M〉t∧sj+1 − 〈M,M〉t∧sj
) =

∫ t

0
f 2
s d〈M,M〉s .

Using Doob’s maximal inequality, one can deduce

E

(
sup

0≤s≤t

∣∣∣∣
∫ s

0
f dM

∣∣∣∣
2
)
≤ 4E

(∫ t

0
f 2
s d〈M,M〉s

)
. (1.1)

The process 〈M,M〉t can be shown to be the limit in probability

An
t =

∞∑

j=0

E((Mt∧tnj+1
−Mt∧tnj )

2 | Ftnj
),

where 0 = tn0 < tn1 < · · · < tnm < · · · are a sequence of partitions of [0,∞) such that
tnj → ∞ as j → ∞ for each n and δn = supj |tnj+1 − tnj | → 0 as n → ∞.

Meyer [9] introduced [M,M]t via 〈Mc,Mc〉 and �Ms (where Mc is the continuous
martingale part of M) and showed that it is the limit in probability of

Bn
t =

∞∑

j=0

(Mt∧tnj+1
−Mt∧tnj )

2.

He also showed that for a continuous martingale M , [M,M]t = 〈M,M〉t .
For a continuous local martingale M , it was shown in Karandikar [3] that for suitably

chosen sequence of random partitions {τni : i ≥ 0} the quadratic variation

Qn
t =

∞∑

j=0

(Mt∧τnj+1
−Mt∧τnj )

2 (1.2)

converges almost surely to 〈M,M〉t . The random partitions were defined as follows: τn0 =
0 and for each n, {τni : i ≥ 1} is defined inductively by

τni+1 = inf{t ≥ τni : |Mt −Mτni
| ≥ 2−n}.
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The proof relied on the theory of stochastic integration. Subsequently, in Karandikar
[4], the formula was derived using only Doob’s maximal inequality. Thus this could be the
starting point for the development of stochastic calculus for continuous semimartingales
without bringing in any results from general theory of processes (see [5]).

The almost sure convergence of Qn
t to 〈M,M〉t also gives a pathwise formula for

the quadratic variation of a continuous local martingale. It also directly shows that for a
continuous local martingale M , the process 〈M,M〉t does not depend upon the underly-
ing filtration and nor does it depend upon the underlying probability measure (see [6]).
Indeed, in [6], a pathwise formula for [M,M]t when M is an r.c.l.l. martingale was
obtained, but the proof depended upon the theory of stochastic integration.

In this article, we show (once again using only Doob’s maximal inequality) that for any
square integrable r.c.l.l. martingale (Mt), the processes Qn

t defined by

Qn
t =

∞∑

j=0

(Mt∧τnj+1
−Mt∧τnj )

2

converge almost surely uniformly on t ∈ [0, T ] for all T < ∞ to the quadratic variation
[M,M]t and that Xt = M2

t − [M,M]t is a martingale.
Once we have shown the existence of [M,M]t , one can get an estimate analogous to

(1.1) for simple predictable processes f :

E

(
sup

0≤s≤t

∣∣∣∣
∫ s

0
f dM

∣∣∣∣
2
)
≤ 4E

(∫ t

0
f 2
s d[M,M]s

)
(1.3)

and this instead of (1.1) could be used as a starting point for developing stochastic cal-
culus for locally square integrable martingales, bypassing completely the Doob Meyer
decomposition. This approach is being taken in a book under preparation.

We give an explicit construction of a mapping� on the set of r.c.l.l. functions on [0,∞)

such that for a r.c.l.l. martingale M ,

�(M·(ω)) = [M,M]·(ω)
yields the quadratic variation of M .

2. The quadratic variation map

Let D([0,∞),R) denote the space of r.c.l.l. functions on [0,∞). For ρ ∈ D([0,∞),R),
ρ(t−) denotes the left limit at t (for t > 0) and ρ(0−) = 0 and �ρ(t) = ρ(t) − ρ(t−).
We will now define quadratic variation �(ρ) of a function ρ ∈ D([0,∞),R).

For each n ≥ 1, let {tni (ρ) : i ≥ 1} be defined inductively as follows: tn0 (ρ) = 0 and
having defined tni (ρ), let

tni+1(ρ) = inf
{
t > tni (ρ) : |ρ(t)− ρ(tni (ρ))| ≥ 2−n

or |ρ(t−)− ρ(tni (ρ))| ≥ 2−n
}
.

Note that for each ρ ∈ D([0,∞),R) and for n ≥ 1, tni (ρ) ↑ ∞ as i ↑ ∞ (if limi t
n
i (ρ) =

t∗ < ∞, then the function ρ cannot have a left limit at t∗). Let

�n(ρ)(t) =
∞∑

i=0

(
ρ(tni+1(ρ) ∧ t)− ρ(tni (ρ) ∧ t)

)2
.
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Since tni (ρ) increases to infinity, for each ρ and t fixed, the infinite sum appearing above
is essentially a finite sum and hence �n(ρ) is itself an r.c.l.l. function. The space D =
D([0,∞),R) is equipped with the topology of uniform convergence on compact subsets
(abbreviated as ucc). Let D̃ denote the set of ρ ∈ D such that ψn(ρ) converges in the ucc
topology and

�(ρ) =
{

limn ψn(ρ), if ρ ∈ D̃,
0, if ρ 
∈ D̃.

Here are some basic properties of the quadratic variation map � .

Lemma 2.1. For ρ ∈ D̃,
(i) �(ρ) is an increasing function,
(ii) ��(ρ)(t) = (�ρ(t))2 for all t ∈ (0,∞),

(iii)
∑

s≤t (�ρ(s))
2 < ∞ for all t ∈ (0,∞),

(iv) let 	(ρ)(t) = �(ρ)(t)−∑0<s≤t (�ρ(s))
2. Then 	(ρ) is a continuous function.

Proof. For (i), note that for s ≤ t , if tnj ≤ s < tnj+1, then |(ρ(s)− ρ(tnj ))| ≤ 2−n, and

�n(ρ)(s) =
j−1∑

i=0

(ρ(tni+1(ρ))− ρ(tni (ρ)))
2 + (ρ(s)− ρ(tnj ))

2,

�n(ρ)(t) =
j−1∑

i=0

(ρ(tni+1(ρ))− ρ(tni (ρ)))
2

+
∞∑

i=j

(ρ(tni+1(ρ) ∧ t)− ρ(tni (ρ) ∧ t))2

and hence

�n(ρ)(s) ≤ �n(ρ)(t)+ 2−2n. (2.4)

Thus (2.4) is valid for all n ≥ 1 and s ≤ t and hence it follows that the limiting function
�(ρ) is an increasing function.

For (ii), it is easy to see that the points of discontinuity of �n(ρ) are contained in
the points of discontinuity of ρ and uniform convergence of �n(ρ)(t) to �(ρ)(t) for
t ∈ [0, T ] for every T < ∞ implies that the same is true for �(ρ) i.e. for t > 0,
��(ρ)(t) 
= 0 implies that �ρ(t) 
= 0.

On the other hand, let t > 0 be a discontinuity point for ρ. Let us note that by the
definition of tnj (ρ),

|ρ(u)− ρ(v)| ≤ 2.2−n ∀u, v ∈ [tnj (ρ), tnj+1(ρ)). (2.5)

Thus for n such that 2.2−n < �(ρ)(t), t must be equal to tnk (ρ) for some k ≥ 1 since
(2.5) implies �ρ(v) ≤ 2.2−n for any v ∈ ∪j (t

n
j (ρ), t

n
j+1(ρ)). Let sn = tnk−1(ρ), where

t = tnk (ρ) and s∗ = lim infn sn. We will prove that

lim
n

ρ(sn) = ρ(t−), lim
n

�n(ρ)(sn) = �(ρ)(t−). (2.6)
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If s∗ = t , then sn ≤ t for all n ≥ 1 implies sn → t and (2.6) follows from the uniform
convergence of �n(ρ) to �(ρ) on [0, t].

If s∗ < t , using (2.5) it follows that |ρ(u) − ρ(v)| = 0 for u, v ∈ (s∗, t) and hence
the function ρ(u) is constant on the interval (s∗, t) and implies that sn → s∗. Also,
ρ(s∗) = ρ(t−) and �(ρ)(s∗) = �(ρ)(t−). So if ρ is continuous at s∗, once again
uniform convergence of �n(ρ) to �(ρ) on [0, t] shows that (2.6) is valid in this case too.

It remains to consider the case s∗ < t and �ρ(s∗) = δ > 0. In this case, for n such that
2.2−n < δ, sn = s∗ and uniform convergence of �n(ρ) to �(ρ) on [0, t] shows that (2.6)
is true in this case as well.

We have, for large n,

�n(ρ)(t) = �n(ρ)(sn)+ (ρ(sn)− ρ(t))2 (2.7)

and hence (2.6) yields

�(ρ)(t) = �(ρ)(t−)+ [�ρ(t)]2

completing the proof of (ii).
(iii) follows from (i) and (ii) since for an increasing function that is non-negative at

zero, the sum of jumps up to t is at most equal to its value at t :
∑

0<s≤t

(�ρ(s))2 ≤ �(ρ)(t).

The last part, (iv) follows from (ii), (iii). �

Remark. � is the quadratic variation map. It may depend upon the choice of the par-
titions. If instead of 2−n, we had used any other sequence {εn}, it would yield another
mapping �̃ which will have similar properties. Our proof will show that if

∑
n εn < ∞,

then for a square integrable local martingale (Mt),

�(M.(ω)) = �̃(M.(ω)) a.s. P.

We note two more properties of the quadratic variation map � . Recall that the total
variation VarT (ρ) of ρ on the interval [0, T ] is defined by

VarT (ρ) = sup

⎧
⎨

⎩

m−1∑

j=0

|ρ(sj+1)− ρ(sj )| : 0 ≤ s1 ≤ s2 ≤ · · · ≤ sm = T , m ≥ 1

⎫
⎬

⎭ .

If VarT (ρ) < ∞, ρ is said to have bounded variation on [0, T ] and then on [0, T ] it can
be written as difference of two increasing functions.

Lemma 2.2. The quadratic variation map � satisfies the following:
(i) For ρ ∈ D and sk ↑ ∞, let ρk be defined via ρk(t) = ρ(t ∧ sk). If ρk ∈ D̃ for all k,
then ρ ∈ D̃ and

�(ρ)(t ∧ sk) = �(ρk)(t) , ∀t < ∞, ∀k ≥ 1. (2.8)

(ii) Suppose ρ is continuous, and VarT (ρ) < ∞, then �(ρ)(t) = 0, ∀t ∈ [0, T ].
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Proof. For (i), it can be checked from the definition that

�n(ρ)(t ∧ sk) = �n(ρ
k)(t) , ∀t . (2.9)

Since ρk ∈ D̃, it follows that �n(ρ)(t) converges uniformly on [0, sk] for every k and
hence using (2.9) we conclude that ρ ∈ D̃ and that (2.8) holds.

For (ii), note that ρ being a continuous function,

∣∣ρ(tni+1(ρ) ∧ t)− ρ(tni (ρ) ∧ t)
∣∣ ≤ 2−n

for all i, n and hence we have

�n(ρ)(t) =
∞∑

i=0

(
ρ(tni+1(ρ) ∧ t)− ρ(tni (ρ) ∧ t)

)2

≤ 2−n ×
∞∑

i=0

∣∣ρ(tni+1(ρ) ∧ t)− ρ(tni (ρ) ∧ t)
∣∣

≤ 2−n × Var[0,T ](ρ).

This shows that �(ρ)(t) = 0 for t ∈ [0, T ]. �

3. Quadratic variation of a martingale

The next lemma connects the quadratic variation map � and r.c.l.l. martingales.

Lemma 3.3. Let (�,F , P ) be a complete probability space and let (Ft ) be a filtration
with F0 containing all null sets in F .

Let (Nt ,Ft ) be an r.c.l.l. martingale such that E(N2
t ) < ∞ for all t > 0. Suppose there

is a constant C < ∞ such that with

τ = inf{t ≥ 0 : |Nt | ≥ C or |Nt−| ≥ C}

one has

Nt = Nt∧τ .

Let

[N,N]t (ω) = [�(N.(ω))](t).
Then ([N,N]t ) is an (Ft ) adapted r.c.l.l. increasing process such thatXt := N2

t −[N,N]t
is also a martingale.

Proof. Let �n(ρ) and tni (ρ) be as in the previous section.

An
t (ω) = �n(N.(ω))(t),

σ n
i (ω) = tni (N.(ω)),

Y n
t (ω) = N2

t (ω)− N2
0 (ω)− An

t (ω). (3.10)
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It is easy to see that {σn
i : i ≥ 1} are stopping times (for each n by induction on i) and that

An
t =

∞∑

i=0

(Nσn
i+1∧t −Nσn

i ∧t )
2.

Further, for each n, σn
i (ω) increases to ∞ as i ↑ ∞. �

We will first prove that for each n, (Y n
t ) is an (Ft ) martingale. Using the identity b2 −

a2 − (b − a)2 = 2a(b− a), we can write

Yn
t = N2

t −N2
0 −

∞∑

i=0

(Nσn
i+1∧t −Nσn

i ∧t )
2

=
∞∑

i=0

(N2
σn
i+1∧t −N2

σn
i ∧t )−

∞∑

i=0

(Nσn
i+1∧t − Nσn

i ∧t )
2

= 2
∞∑

i=0

Nσn
i ∧t (Nσn

i+1∧t −Nσn
i ∧t ).

Let us define

X
n,i
t = Nσn

i ∧t (Nσn
i+1∧t −Nσn

i ∧t ).

Then

Yn
t = 2

∞∑

i=0

X
n,i
t . (3.11)

Noting that for s < τ , |Ns | ≤ C and for s ≥ τ , Ns = Nσ , it follows that

(Nσn
i+1∧t − Nσn

i ∧t ) > 0 implies that |Nσn
i ∧t | ≤ C.

Thus, writing 
C(x) = max{min{x,C},−C} (x truncated at C), we have

X
n,i
t = 
C(Nσn

i ∧t )(Nσn
i+1∧t − Nσn

i ∧t ) (3.12)

and hence, Xn,i
t is a martingale. Using the fact that Xn,i

t is Ft∧σn
i+1

measurable and that

E(X
n,i
t |Ft∧σn

i
) = 0, it follows that for i 
= j,

EX
n,i
t X

n,j
t = 0 (3.13)

Also, using (3.12) and the fact that N is a martingale, we have

E(X
n,i
t )2 ≤ C2

E{Nσn
i+1∧t −N.

σn
i ∧t }

2

= C2
E{N2

σn
i+1∧t −N2

σn
i ∧t }. (3.14)
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Using (3.13) and (3.14), it follows that for s ≤ r ,

E

(
r∑

i=s

X
n,i
t

)2

≤ C2
E{N2

σn
r+1∧t −N2

σn
s ∧t }. (3.15)

Since σn
i increases to ∞ as i tends to infinity, E(N2

σn
s ∧t ) and E(N2

σn
r+1∧t ) both tend to

E[N2
t ] as r, s tend to ∞ and hence

∑r
i=1 X

n,i
t converges in L2(P). In view of (3.11), one

has

2
r∑

i=1

X
n,i
t → Yn

t in L2(P) as r → ∞

and hence (Y n
t ) is an (Ft )-martingale for each n ≥ 1.

For n ≥ 1, define a process (Nn) by

Nn
t = N(σn

i ) if σn
i ≤ t < σn

i+1.

Observe that by the choice of {σn
i : i ≥ 1}, one has

|Nt −Nn
t | ≤ 2−n for all t . (3.16)

For now, let us fix n. For each ω ∈ �, let us define

E(ω) = {σn
i (ω) : i ≥ 1} ∪ {σn+1

i (ω) : i ≥ 1}. (3.17)

It may be noted that for ω such that t �→ Nt(ω) is continuous, each σn
j (ω) is necessarily

equal to σn
i+1(ω) for some i, but this need not be the case when t �→ Nt(ω) has jumps.

Let ζ0(ω) = 0 and for j ≥ 0, let

ζj+1(ω) = inf{s > ζj (ω) : s ∈ E(ω)}.
It can be verified that

{ζi : i ≥ 1} = {σn
i : i ≥ 1} ∪ {σn+1

i : i ≥ 1}. (3.18)

To see that each ζi is a stop time, fix i ≥ 1, t < ∞. Let Akj = {(σn
k ∧ t) 
= (σn+1

j ∧ t)}.
Since σn

k , σ
n+1
j are stopping times, Akj ∈ Ft for all k, j . It is not difficult to see that

{ζi ≤ t} =
i⋃

k=0

({σn
i−k ≤ t}

⋂
Bk),

where B0 = � and for 1 ≤ k ≤ i,

Bk =
⋃

0<j1<j2<···<jk

((
i−k⋂

l=0

k⋂

m=1

Aljm

)
∩ {σn+1

jk
≤ t}

)

and hence ζi is a stopping time.
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Using (3.18) and using the fact that Nn
t = Nt∧σn

j
for σn

j ≤ t < σn
j+1, one can write Yn

and Yn+1 as

Yn
t =

∞∑

j=0

2Nn
t∧ζj {Nt∧ζj+1 −Nt∧ζj },

Y n+1
t =

∞∑

j=0

2Nn+1
t∧ζj {Nt∧ζj+1 −Nt∧ζj }.

Hence

Yn+1
t − Yn

t = 2
∞∑

j=0

Z
n,j
t , (3.19)

where

Z
n,j
t = (Nn+1

t∧ζj −Nn
t∧ζj )(Nt∧ζj+1 − Nt∧ζj ).

Also, using (3.16) one has

|Nn+1
t −Nn

t | ≤ |Nn+1
t −Nt | + |Nt −Nn

t | ≤ 2−(n+1) + 2−n ≤ 2.2−n (3.20)

and hence (using that (Ns) is a martingale), one has

E[(Zn,j
t )2]≤ 4

22nE[(Nt∧ζj+1 −Nt∧ζj )2]= 4

22nE[(Nt∧ζj+1)
2 − (Nt∧ζj )2].

(3.21)

It is easy to see that E(Zn,j
t |Ft∧σn

j
) = 0 and Z

n,j
t is Ft∧σn

j+1
measurable. It then follows

that for i 
= j ,

E[Zn,j
t .Z

n,i
t ] = 0

and hence (using (3.21))

E(Y n+1
t − Yn

t )
2 = 4E

⎡
⎢⎣

⎛

⎝
∞∑

j=0

Z
n,j
t

⎞

⎠
2
⎤
⎥⎦

= 4E

⎡

⎣
∞∑

j=0

(Z
n,j
t )2

⎤

⎦

≤ 16

22n

∞∑

j=0

E[(Nt∧ζj+1)
2 − (Nt∧ζj )2]

≤ 16

22n
E[(Nt )

2]. (3.22)
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Thus, recalling that Yn+1
t , Y n

t are martingales, it follows that Yn+1
t − Yn

t is also a
martingale and thus invoking Doob’s maximal inequality, one has (using (3.22))

E[sups≤T |Yn+1
s − Yn

s |2] ≤ 4E(Y n+1
T − Yn

T )
2

≤ 64

22nEN
2
T . (3.23)

Thus, for each n ≥ 1 (writing ‖X‖2 for the L2(P) norm : ‖X‖2 = √
(E[X2])),

‖ [sups≤T |Yn+1
s − Yn

s |] ‖2 ≤ 8

2n
‖NT ‖2. (3.24)

It follows that

ξ =
∞∑

n=1

sup
s≤T

|Yn+1
s − Yn

s | < ∞ a.s.

(as ‖ξ‖2 < ∞ by (3.24)). Hence (Y n
s ) converges uniformly in s ∈ [0, T ] for every T a.s.

to an r.c.l.l. process, say (Ys). As a result, (An
s ) also converges uniformly in s ∈ [0, T ] for

every T < ∞ a.s. to say (As) with Yt = N2
t − N2

0 − At . Further, (3.4) also implies that
for each s, convergence of Yn

s to Ys is also in L2 and thus (Yt ) is a martingale.
Since An

s converges uniformly in s ∈ [0, T ] for all T < ∞ a.s., it follows that

P(ω : N·(ω) ∈ D̃) = 1

and At = [N,N]t . We have already proven that Yt = N2
t −N2

0 −[N,N]t is a martingale.
This completes the proof.

We are now in a position to prove an analogue of the Doob–Meyer decomposition
theorem for the square of an r.c.l.l. locally square integrable martingale.

Theorem 3.4. Let (�,F , P ) be a complete probability space and let (Ft ) be a filtration
with F0 containing all null sets in F . Let (Mt ,Ft ) be an r.c.l.l. locally square integrable
martingale i.e. there exist stopping times ζn increasing to ∞ such that for each n, Mn

t =
Mt∧ζn is a martingale with E[(Mt∧ζn)2] < ∞ for all t, n.

Let

[M,M]t (ω) = [�(M.(ω))](t).
Then

(i) ([M,M]t ) is an (Ft ) adapted r.c.l.l. increasing process such that Xt = M2
t −

[M,M]t is also a local martingale.
(ii)

P(�[M,M]t = (�Mt)
2, ∀t > 0) = 1.

(iii) If (Bt ) is an r.c.l.l. adapted increasing process such that B0 = 0 and

P(�Bt = (�Mt)
2, ∀t > 0) = 1

and Vt = M2
t − Bt is a local martingale, then P(Bt = [M,M]t , ∀t) = 1.
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(iv) If M is a martingale and E
(
M2

t

)
< ∞ for all t, then E ([M,M]t ) < ∞ for all t and

Xt = M2
t − [M,M]t is a martingale.

(v) If E ([M,M]t ) < ∞ for all t then E
(
M2

t

)
< ∞ for all t, (Mt ) is a martingale and

Xt = M2
t − [M,M]t is a martingale.

Proof. For k ≥ 1, let τk be the stopping time defined by

τk = inf{t > 0 : |Mt | ≥ k} ∧ ζk ∧ k.

Then Mk
t = Mt∧τk is a martingale satisfying conditions of Lemma 3.3 with C = k

and τ = τk and hence Xk
t = (Mk

t )
2 − [Mk,Mk]t is a martingale, where [Mk,Mk]t =

	(Mk· (ω))t . Also,

P({ω : Mk· (ω) ∈ D̃}) = 1, ∀k ≥ 1. (3.25)

Since Mk
t = Mt∧τk , it follows from Lemma 2.2 that

P({ω : M·(ω) ∈ D̃}) = 1 (3.26)

and

P({ω : [Mk,Mk]t (ω) = [M,M]t∧τk(ω)(ω)}) = 1.

It follows that Xt∧τk = Xk
t a.s. and since Xk is a martingale for all k, it follows that Xt is

a local martingale. This completes the proof of part (i). Part (ii) follows from Lemma 2.1.
For (iii), note that

Ut = [M,M]t − Bt

is a continuous process and recalling Xt = M2
t − [M,M]t and Vt = M2

t − Bt are local
martingales, it follows that Ut = Vt − Xt is also a local martingale with U0 = 0. By
part (i) above, Wt = U2

t − [U,U ]t is a local martingale. On the other hand, Ut being a
difference of two increasing functions has bounded variation, VarT (U) < ∞. Since U is
continuous, by Lemma 2.2,

[U,U ]t = 0 ∀t .

Hence Wt = U2
t is a local martingale. Now if σk are stop times increasing to ∞ such that

Wt∧σk is a martingale for k ≥ 1, then we have

E[Wt∧σk ] = E[U2
t∧σk ] = E[U2

0 ] = 0

and hence U2
t∧σk = 0 for each k. This yields Ut = 0 a.s. for every t . This completes the

proof of (iii).
For (iv), we have proven in (i) that Xt = M2

t −[M,M]t is a local martingale. Let σk be
stop times increasing to ∞ such that Xk

t = Xt∧σk are martingales. Hence, E[Xk
t ] = 0, or

E
([M,M]t∧σk

) = E(M2
t∧σk )− E(M2

0 ). (3.27)
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Invoking Doob’s maximal inequality, we have

E

[
sup
s≤t

|M2
s |
]
≤ 4E[M2

t ] < ∞. (3.28)

Now, M2
t∧σk are dominated by the integrable function sups≤t |M2

s | and hence M2
t∧σk

converges to M2
t in L1. By monotone convergence theorem,

E([M,M]t∧σk) → E ([M,M]t ) . (3.29)

Thus from (3.27),

E ([M,M]t ) = E[M2
t ] − E[M2

0 ]

and convergence in (3.29) is in L1. It follows that Xk
t converges to Xt in L1(P) and hence

(Xt) is a martingale.
For (v) let σk be as in part (iv). One has using (3.27) and that [M,M]t is increasing,

E[M2
t∧σk ] = E[M2

0 ] + E([M,M]t∧σk)
≤ E[M2

0 ] + E([M,M]t ).

Now using Fatou’s lemma, one gets

E[M2
t ] ≤ E[M2

0 ] + E([M,M]t ) < ∞.

Now we can invoke part (iv) to complete the proof.
It may be noted that we have not assumed that the underlying filtration is right-

continuous.

Remark. We conclude with an observation that we cannot get a mapping

	 : D([0,∞),R) → D([0,∞),R)

such that for any martingale M ,

	(M.(ω)) = 〈M,M〉.(ω). (3.30)

Let � = R and F = B(R), the Borel σ -field on R. Let X(ω) = ω and let Pθ denote the
probability measure on (�,F) such that X has Gaussian distribution with mean 0 and
variance θ2. Let M be defined by

Mt(ω) = X(ω)1[1,∞)(t).

It is easy to see that M is a martingale with respect to its canonical filtration and

[M,M]t (ω) = X2(ω)1[1,∞)(t)

while

〈M,M〉t (ω) = θ21[1,∞)(t).
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Thus if a mapping 	 satisfying (3.30) exists, then

	(M·(ω))t = θ21[1,∞)(t) a.s.Pθ . (3.31)

On the other hand, it is well known and easy to see that for any 0 < θ1, θ2 < ∞, the
probability measures Pθ1 and Pθ2 are mutually absolutely continuous contradicting (3.31).

Thus for a martingale M , while the ω-path of the quadratic variation process
[M,M] · (ω) can be computed using only the path M·(ω) of the martingale, the path of
predictable quadratic variation 〈M,M〉·(ω) cannot be computed or expressed in a similar
fashion.
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