期刊论文详细信息
Proceedings Mathematical Sciences
On the Stability of the $L^p$-Norm of the Riemannian Curvature Tensor
Soma Maity1 
[1] Department of Mathematics, Indian Institute of Science, Bangalore 0 0, India$$
关键词: Riemannian functional;    critical point;    stability;    local minima.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

We consider the Riemannian functional $mathcal{R}_p(g)=int_M|R(g)|^p dv_g$ defined on the space of Riemannian metrics with unit volume on a closed smooth manifold 𝑀 where $R(g)$ and $dv_g$ denote the corresponding Riemannian curvature tensor and volume form and $pin (0,∞)$. First we prove that the Riemannian metrics with non-zero constant sectional curvature are strictly stable for $mathcal{R}_p$ for certain values of 𝑝. Then we conclude that they are strict local minimizers for $mathcal{R}_p$ for those values of 𝑝. Finally generalizing this result we prove that product of space forms of same type and dimension are strict local minimizer for $mathcal{R}_p$ for certain values of 𝑝.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040507102ZK.pdf 349KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:1次