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Abstract.  We consider the Riemannian functional R (g) = f u IR(8) [P dvg defined
on the space of Riemannian metrics with unit volume on a closed smooth manifold M
where R(g) and dvg denote the corresponding Riemannian curvature tensor and vol-
ume form and p € (0, 0o). First we prove that the Riemannian metrics with non-zero
constant sectional curvature are strictly stable for R, for certain values of p. Then we
conclude that they are strict local minimizers for R , for those values of p. Finally gen-
eralizing this result we prove that product of space forms of same type and dimension
are strict local minimizer for R, for certain values of p.
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1. Introduction

Let M be a closed smooth manifold of dimension n > 3 and M denote the space of
Riemannian metrics on M endowed with the C%“-topology for any « € (0, 1). In this
paper we study the following Riemannian functional:

Rp(g) = fM IR(g)[Pdv,

where R(g) and dv, denote the corresponding Riemannian curvature and volume form.
Since the functional is not scale-invariant, we restrict the functional to the subspace M| C
M consisting of metrics with unit volume. For p < 7, it was pointed out by Gromov that
infg R A1, = 0 [1]. Note that for p = ’21 the functional is scale-invariant. In dimension
four, the Chern—Gauss—Bonnet theorem implies that Einstein metrics give an absolute
minimum 872 x (M) for the functional R,, where x (M) denotes the Euler characteristic
of M. In [2], Anderson conjectured that if M be a closed hyperbolic 3-manifold then

inf, R; is realized by the hyperbolic metric. In this paper, we study the local minimizing
property of R, for p > 2 at some certain critical metrics.

Before stating our results we recall a canonical decomposition of tangent space of M.
From Lemma 4.57 in [3], if M is a compact Riemannian manifold, we have the orthogonal
decomposition of the tangent space of M at g (which is the space S(T* M) of symmetric
2-tensors on M):

TeM = S*(T*M) = (Im 8% 4+ C®(M).g) & (8, (0) N Tr, ' (0)). (1.1)
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Here Im 82,‘ is precisely the tangent space of the orbit of g under the action of the group

of diffeomorphisms of M. Since T, M| = {h € SZ(T*M)| fM tr(h)dvg = 0}, we have a
corresponding decomposition

Te My = (Im8} 4+ C™(M).g) N Ty My @ (87 1(0) N'Tr, ' (0)). (1.2)

M is an open convex subset of S>(T*M) equipped with C>“-topology. Since S*(T*M)
is a vector space we can differentiate R , on M along any vector in S2(T*M). VR,(g)
in S2(T*M) is called the gradient of Rp at g if for every h € S2(T*M),

— R -
g R+ 1) = Ry = (VR (0). ).
g is called a critical point for R, if the component of VR ,(g) along T, M is zero.
By a standard technique one can prove that every compact irreducible locally symmetric
space is a critical point of R ,. Let g be a critical point of R . The Hessian H of R, is a

symmetric bilinear map,

H:Te My x TeMp — R

defined by
a0
H(hy, hy) = . aSRp(g(S, 1))}r=0,5=0,
where g(s,?) is a two-parameter family of metrics in M; with g(0,0) = g and

2 g(t.0)=0 = h1, [ 8(0, 8)j5=0 = ha.
Let W denote the orthogonal complement of Im & in Tg M.

DEFINITION 1.1

Let (M, g) be a critical point for R a1, . The metric g is called infinitesimally rigid for
R if the kernel of the bi-linear form H restricted to W x W is zero.

In [9], Muto proved that (S”, can) is infinitesimally rigid for R,. For p = 2, the appli-
cation of the differential Bianchi identity simplifies the expression for the gradient of R;.
So it is easier to study the second variation of R, than R, for any arbitrary p, at a criti-
cal point. However it is not known that R, is infinitesimally rigid even for any arbitrary
irreducible symmetric space.

DEFINITION 1.2

Let (M, g) be a critical point for R ,. (M, g) is strictly stable for R if thereis an € > 0
such that for every element 4 in W,

H(h, h) = €|h]?, (13)
where ||.|| denotes the L2-norm on S2(7*M) defined by g.

For a metric with constant sectional curvature or product of metrics with constant sec-
tional curvature we prove that R, is infinitesimally rigid. In fact, we prove that R is
strictly stable for these metrics.
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Theorem 1.1. Let (M, g) be a closed Riemannian manifold with dimension n > 3. If
(M, g) is one of the following then g is strictly stable for R, for the indicated values

of p:

(1) A spherical space form and p € [2, 00).

(ii) A hyperbolic manifold and p € [, 00).
(iii) A product of spherical space forms and p € [2, n].
(iv) A product of hyperbolic manifold and p € [%, n].

Moreover, in all these cases, H is diagonalizable with respect to the decomposition (1.2),
forall p € [2, 00).

The product of a spherical space form and a compact hyperbolic manifold with the
same dimension is a critical point of R, but we are not able to prove that this is stable
for R . From the proof of the theorem we observe the following Proposition, which gives
some information in the hyperbolic case when p < 7.

PROPOSITION 1

Let (M, g) be a compact hyperbolic manifold with the sectional curvature c. If the first
positive eigenvalue of the Laplacian Ay satisfies the inequality

lel(n —2p)
n+2p+4’

then g is strictly stable for p € [2, 7).
DEFINITION 1.3

Let (M, g) be a critical metric for R, aq,. Then g is called a strict local minimizer if
there exists a C2’°‘-neighborhoodu of g in M, such that for all metrics g € U,

Rp(g) > Rp(g)~
The equality holds if and only if § = ¢*g for some C>“-diffeomorphism ¢ : M — M.

Since M and its sub-manifolds are Fréchet manifolds modeled on S%(T*M), the usual
inverse function theorem can not be applied. Using the Slicing Lemma 2.10 in [7], we
observe that if (M, g) is a closed Riemannian manifold such that g is strictly stable then
it is a strict local minimizer for R . Applying Holder inequality one can prove that if g
is a strict local minimizer for R, then it is also a strict local minimizer for R, for p > 2.
But it does not imply strict stability of R, at g.

Similar results have been proved by Besson et al. in [4] for all irreducible locally
symmetric spaces of non-compact type for the functional

n
/ Is|2d vy,
M

where s denotes the scalar curvature of g.

In §4, we study the second variation of R , at metrics with constant curvature and prove
parts (i) and (ii) of the theorem using the decomposition (1.2). We first prove that for any
he (5;1(0) N Tr;l(O)), there exists an €p > 0 such that H (h, h) > €g||h||* forall p > 2
in this case.
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Next, we study the second variation of R, along the conformal variations of the metric.
A positive lower bound of the Ricci curvature gives a lower bound for the first eigenvalue
of the Laplacian for compact manifolds. Using this estimate we prove that for any f €
C°°(M), there exists an €| > 0 such that

H(fg, fo) = el fel? (1.4)

for metrics with constant positive sectional curvature for p > 2. When the sectional
curvature is negative (1.4) follows immediately for p > g from the expression of H (h, h)
we obtained in this section. For p < 7, if the first eigenvalue of the Laplacian 1, satisfies
the inequality A; > fg;iﬁ) (c is the sectional curvature), then H satisfies (1.4).

Finally, proving that H is diagonalizable by the decomposition (1.2) for all p > 2, we
get the desired result.

In §5, we prove parts (iii) and (iv) of the theorem. The main steps of the proof
are similar to the proof of (i) and (ii). In §6, we study the local minimization property

of Rp.

2. Index of notations and definitions
The following notations and definitions will be used throughout this paper. Let (M, g) be

a Riemannian manifold with dimension n > 3.

R, 7, s: (4,0) Riemannian curvature tensor, Ricci curvature, scalar curvature respectively.
dvg, V(g) : The volume form and the volume of (M, g).

(,),].|: The point-wise inner product and norm in the fibres of a various tensor bundle
M defined by g.
(, ), IIll : The global inner-product and norm defined on the space of sections of a tensor

bundle on M induced by g.

D, D* : The Riemannian connection and its formal adjoint.

S 2(T*M ) : The sections of symmetric 2-tensor bundle over M.

dP: SX(T*M) — T(T*M ® A’M) defined by dPa(x,y,z) = (Dya)(x,z) —
(D;a)(x, y), where A?M denotes the space of alternating 2-tensors and I'(T*M ® A2M)

denotes the sections of (T*M ® A2M). Its formal adjoint §” is defined by, §? (A) (x, y) =
Y ADe; A(x, y, i)+ D¢, A(y, X, €;)}, where {e;} is an orthonormal basis at a pointx € M.

R(x,y) =Y R(x,ei e, e)R(y, ei, e, ex).

Next, consider a one-parameter family of metrics g () with g(0) = gand h := ‘(?t g ji=0.

Define, I1j,(x, y) = f?z Dy yi=o and Cp(x, y, z) := (ITx(x, ), z). A simple calculation
shows that Cp, (x, y, z) = é[th(y, 2) + Dyh(x,z) — D h(x, y)], where x, y, z are fixed
vector fields on M. The suffix & will be omitted when there is no ambiguity.

Ry = [ Ry—oand 7 (x, y) := Ru(x, e, y, €).
8g 1 SH(T*M) — Q' (M) defined by 84 (h)(x) = —D,;h(e;, x). Its formal adjoint &} is
defined by 83w (x, y) := 5 (Dyy + Dyx).



On the stability of R p 387

L : A (0, 3)-tensor is defined by
Ly(w,y,2): = Y [R(y,z, (e, ¢), w) + R(y, 2, &, T(ei, w))
+R(z, e, T1(y, €i), w) + R(z, e, e;, [1(y, w))

+R(ei, y, I(z, ), w) + R(e;, y, ei, [1(z, w))].
Wy, := (D*)'(h)(R) — Lj,.

d, § : The exterior derivative acting on the space of deferential forms and its formal
adjoint.

A : The Laplace operator acting on C*°(M) defined by Af = 8df = —tr Ddf.

3. Gradient of R
In this section, we compute the Euler-Lagrange equation of R p,.

PROPOSITION 2
The functional R is differentiable with the gradient
o1

VRpim = —=pS" D*IRIPZR = pIRI"*R + , [RI"g

and
D x| pp—2 . p 1

VRpim, =—pS”D*|RIP""R — p|RI""R + 2|R|”g+ w2 IRII”g.

Proof.

0 1
(R))g(h) = /M o IRIPdugi—o + /M IRIPtr (hdu,

(IRIPYy (k) = §I(|R|2)E:0 = pIRI”">(R, Ry.h) = 2p|R|P (R, h).
From Proposition 4.70 in [3] we have

R;,.h(x, v,z,t) = DyC(h)(x,z,t) — DyC(h)(y,z,t) + R(x, y, 2, he(1)).
Since R is skew-symmetric in the 1st and 2nd entries,

(IRIP7*R, R (h)) = =2(|R|"">R, DC(h)) + (IR|" >R, h).
Therefore,

(IRIP>R, Ry (h)) = —2(|R|P"*R, DC(h)) + (|R|"*R. h)
= —2(D*[RIP*R,C(h)) + (IRI" >R, h).

The skew-symmetry of D*(|R|P~2R) in the last two entries yields
2{D*(IRIP7*R), C(h)) = (D*(IRI"*R), d" ().
This implies that

(IRIP*R, Ry.h) = —(8" D*|R|" >R, h) + (|R|" >R, h).
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Hence
. 1

Ri-h=—p@EPD*IRI"ZR, h) = p(IRI"ZR, by +  (IRI g, h).

Therefore,
.1

VRpim = —p8"D*[RIPZR = p|RI" R+ IR|"g.

Now,
n
/ tr (VR p)dvg = (2 - p) IR|I”.
M

Therefore,

_ 5~ 1 )4 1
VR pm, = —pSPD*|RIP2R — p|RIP R + ,IRI7g + (n — 2) IRI”g.
(3.1)
O

By a standard technique one can easily check that every compact isotropy irreducible
homogeneous space, and in particular every irreducible symmetric space is a critical
point for R ,. Let (M1, g1) and (M2, g2) be two homogeneous critical points of R, with
[R|g, = |R|g, # 0. Then (M1 x M3, g1 + g2) is a critical metric for R, if and only if the
dimensions are the same.

4. Second variation at space forms

In this section, we study the second variation of R,. Let (M, g) be a closed locally
symmetric space and hp, hy € SZ(T*M). Then

H(hi,hy) = (VRpm,)p(h1), h2)
= —p(BPD*(IRIP2R)) (1), ha) — p((IRIP ™), ()R, h2)

. 1
—p{RIP7>(R) (1), ha) + 2<(|Rlp);(h1)g, h2)

1 1
F_IRIP () + (= D) IRIP (1. ha).
2 n 2

Since g is homogeneous and R is parallel,
P D*(IRIP2R)), (h1) = 6Py, (h) D* (RIP*R)+8" (D*), (h1)(IRIP*R)
+ 8P D (RIPH, (1) R) + 8P D* (RIP2 Ry (h1)
= [RI”7X(D*),(h)R + |R|P 75" D* Ry,
+8P D*((|RIP™),(h1)R).
Since g satisfies eq. (3.1), R= ,11|R|2g. Hence

H(hi, hy) = —p|RIP>((8”(D*),(h)R, ha) + (D* Ry, d"h2))
—pIRIP(R, (), h2) — p((IRIP), ()R, DA h)
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IRP((IRIP), (h)g, ha) + ((IRIP);(M)g,hz)
IRIP (A1, ha). 4.1

:"u:"u

Next, we assume (M, g) to be a Riemannian manifold with non-zero constant sectional
curvature throughout this section. We need the following lemma to prove parts (i) and (ii)
of the theorem.

Lemma4.1. Let (M, g) be a Riemannian manifold with non-zero constant sectional
curvature c. Then

(i) (zé);,.h =2c*(n 4 Dh — 4c2tr(h)g + 2c[—2838;h — Ddtr(h) + D*Dh].
(i) 8PWy, = c(n — 2)8PdPh 4 2¢Ddtr(h) 4 2cAtr(h)g.
(iii) D*Ry, = —dP7y, — Ly,.
(iv) 7p = ,[2(n — )ch — 2838;h — Ddtr(h) + D* Dh).
(v) 8°dPh =2D*Dh — 28%8gh +2nch — 2ctr(h)g.
(i) (IR|P)y.h = =2pc|RIP2Q21r858sh — Atr(h) + (n — Dctr(h)).

4.1 Proof of Lemma 4.1

Let () be a one-parameter family of Riemannian metrics with g(0) = g and g’(0) = h.
Choose a normal co-ordinate {e;} with respect to g. Let D be the Riemannian connection
corresponding to g.

Proof of (i) and (iv).

— ghibghhgkikop . . .
Rpg =8"28"12¢8 Rpiy jiky Rgin joks -

Therefore,
(]é h)/ (”lllz)/~/112~k1k2R R + 1112( /1/2) ohikep . . p ..
g pq 4 8 pititkilRqiz jpko T8 8 pi1jikiflqia joka
~lllz Jiia gkika . lllz /112~k1k2 VR
+8 (& )RPlljlkqulzjzk2+g Rpiy jik) Rgin joky
~iqi ~' ir ~k1k
+&'"2 g 2GR piy ik (Rginjoky) -
Note that () = —g" h,u,§" . Therefore,

(I\ég-h)/pq = —hmn (Rpminqnij + Rpiijqinj + Rpiijqijn)
+(Ry-1) piji Ryijic + Rpiji(Ry -M)gijk-

Since R(0) = cl, R;jijj = —Ryjji =cforall 1 <i, j <n,and R;ji; = 0. This implies
Z [hmn(Rpminqnij + Rpimj Rginj + Rpiijqijn)] = 2(n— 3)C2hpq
m,n,i, j

+4c2tr(h) g pg»

(Ry (M) pijk Rgijk = (Ry(h)) pigi Ryigi + (Ry(h)) piiq Ryiiq = 2¢(Ry (h)) pigi
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(RS (1) gijk Rpiji = 2¢(Ry(M)gipi = 2¢(Ry(h)) pigi-
From equation 1.174(c) in [3], we have

2Ry (M) pigi = [(Djyh) pi + (Dih)gi — (D )i — (D) pg
+hijRpiqj — hqjRpiij]-

Using the Ricci identity we have

Sil(D7,h) pi+ (D )gi] = Sil(D7)hpi — (Dg;h) pi+ (D) pi+ (D) gi
= Xi,j[hijRigpj+hpjRigij]—D8ghpq—Déghgp
= X j[hijRigpj + hpjRigij] — 2848¢h pg.

Therefore,

2(R;(h))piqi = hijRigpj + hpjRigij — 28385 pq — Ddtr(h) pg
+D*thq + hinp,'qj — hqupi,'j.

Using R = ¢/ again we obtain,
hijRigpj + hpjRigij + hijRpiqj — hgjRpiij = 2(n — D)chpg.
Combining these two equations, the proof of Lemma 4.1(iv) follows. Next,

(zé;(h)),,q = =201 — 3)Phpg — 4c’tr(h)gpq +4cSi j(Ry.1) pigi
200+ 1)Phpg — Ac?tr (h)gpg + 2c[—28785h g
—Ddtr(h) pg + D*Dh .

This completes the proof of Lemma 4.1(i). O

Proof of (ii). Let T be a (0, 4) tensor independent of ¢. Then using the expression for D*
in a local co-ordinate chart and differentiating it with respect to ¢ we obtain

(D*);(h)(T)(X, y,2) = —(gkj)/(DkT)jxyZ + g'kj[Tl'ijxyz + T yz
+zjl'lkyz + zjyl'lkz]'

Note that, IT is a vector valued symmetric two form. Next,

(D*)o (W) (R) jki = Ri jir + Rinjkt + Rijrgr + Rijiry -
By the definition of Ly,

Lpjki = {Run;; j + Ruiny; + Riing, j + Rikry j + Riiimy; + Rikiry; b
Combining these two and using the symmetries of R we have

Whjki = [Rijn + Rijkny, — Riing,j — Rikry j — Riiiny; — Rikir; -
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Pairing it with dP« for any @ € S*(T*M) and using the symmetries of R and dPa we
have

> WandPaji =2 (Rijnys — Riingj — Riiny; ) (dP ) ji.
R = cI gives
> RijngidPaji = ¢} Crim Rijmd ot
= ¢ Cuid®aji; —c ) Cujd eju,

> RinyjdPaju = ¢ Citm RiimjdPatju
= CZCjkldDOljkl - CZCikidDotlkl
and
ZRl[ijdiC(jkl = cZijmRmmdDOljkl
= —(n=1Dc Y Ciud .

Since C is symmetric in the first two entries and d”« is skew-symmetric in the last two
entries,

> CujdPaju =0.

Next a simple calculation gives >, Cki; = édtr(h)k and Z/ dDajkj = dtrag + 8y0.
Then

1 1
D D D D
E Cind™ aji = ) E (Cjrr — Cju)d™ ajp = ) E d”hjrd” oji.
Combining all these equations we have

§PWy = (n — 2)e8PdPh + 2¢Ddtr (h) + 2¢ Atr(h)g.

Proof of (iii). Letx, y, z, u, w be fixed vector fields. Then

(D«R)' (y,z,u,w) = (x.R(y,z,u, w)) = {Ry(Dxy, z, u, w)
+Ri(y, Dxz, u, w) + Ry (y, z, Dy, w)
+Ri(y, z, u, Dyw) + R(I1(x, y), z, u, w)
+R(y, II(x,2), u, w) + R(y, z, T (x, u), w)
+R(y, z,u, I (x, w))}

= DyRn(y,z,u,w) — {R(IT(x, ), z,u, w)

+R(y, II(x,2), u, w) + R(y, z, T (x, u), w)
+R(y, z,u, II(x, w)}.

Applying the differential Bianchi identity we get

(DXR)/(ya Z’ Ma w) + (DyR)/(Za x5 uv w) + (DZR)/(‘X7 yv Ma w) == 0
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Dxﬁh(y, z,u, w) + Dth(z, X,u,w)+ Dzﬁh(x, V, U, w)
= R(I1(x, y), z,u, w) + R(y, [1(x, 2), u, w) + R(y, z, [1(x, u), w)
+R(y, z,u, I(x, w)) + R(T1(y, 2), x, u, w) + R(z, 1 (y, x), u, w)
+R(z,x, I(y, u), w) + R(z, x, u, [1(y, w)) + R(I1(z, x), y, u, w)
+R(x, T1(z, y), u, w) + R(x, y, I1(z,u), w) + R(x, y, u, [1(z, w))
= R(y,z, I (x, u), w) + R(y, z, u, [1(x, w)) + R(z, x, T1(y, u), w)
+R(z, x,u, II(y, w)) + R(x, y, [1(z, u), w) + R(x, y, u, I1(z, w)).

Consequently,

Z(Dei Rh)(eia wa y5 Z) = Z(De,-)kh(y’ Z’ eia w)

=Y {(DyRu).er.ei,w)+ (D Ry)(ei.y ei,w)}
+Lp(w, y, z)

> Dy Rz e, w, i) — (D Ru)(ei, y, ei, w))

+Ly(w,y,z)
= dPr(w,y,2) + Li(w, y, 2).

Therefore,

D*Rh = —deh — Ly.

Proof of (v). From the identity (2.8) of [6], we have

8PdPhpg = 2D Dhpg —28385hpg + Y _(rpihig +rgihip) =2 Rpigihij.
l 4
A straightforward computation using R = ¢/ gives the required result. (]
Proof of (vi). From the proof of Proposition 2,
(IRI"Yg-h = pIRIP>(R. Ry-h) —2p|RIP"2(R, h)
= 2p|RIP2 Y (RyW)ijij — 25 IR|Ptr (h).

Using (iv) we have

> (Ry.hyijij = tr(F) 1
= c(n— Dtr(h) —trdg8h + 2(trD*Dh — trDdtr(h))
= c(n— Dtr(h) — tr8;8gh + Atr(h).

Since |R|? = 2¢2n(n — 1) we have

(IRIP), (h) = —2cp|RIP2(tr858gh — Atr(h) + (n — Detr (h)).



On the stability of R p 393

Next, we study the stability of R, which is a space form. A symmetric covariant 2-tensor
h is called Transverse-Traceless tensor (TT-tensor) if 6,4 = 0 and #r(h) = 0. First, we
study H on TT-variations.

4.2 Transverse-traceless variations

Let (M, g) be a Riemannian manifold with constant sectional curvature ¢ # 0 and h €
8;1 (0) N'Tr~'(0). In this case the expression for H (h, h) reduces to

H(h.h) = —p|RIP2[(8°(D*),.h(R), h) + (D*Ry. d"h) + (R, (h). h)]
+ 1R (..

Using Lemma 4.1(iii) we have

H(h,h) = —p|RIP72[(8" Wi, h) — (Fa, 8°dPh) + (R} (), )]
+" 1R (..

Then from Lemma 4.1(i) we have

p 2.5 _
RN Gy ) = PIRIPZH(RY By = 2pe(n = DRI A

—plIRIP2{(n — D)2 (h, h)
+2¢(Dh, Dh)}
= —2pc|RI”72|Dh|?.

Using Lemma 4.1(ii) and (v) we have

(8°Wi, h) = c(n—2)(8%dPh, h)
= 2¢(n —2)(D*Dh, h) +2c¢*n(n — 2)(h, h)
2c(n — D|Dh|* +2¢*n(n — 2)||h])*.

Next using Lemma 4.1(iv) and (v) we have

(Fn, 8PdPh)y = —(2(n — 1)ch + D*Dh, D* Dh + nch)
—[ID*Dh|)? + Bn — 2)c||Dh|? + 2¢2n(n — D)||h]12].

Combining all these results we have
H(h,h) = plRI"72{ID* Dh||* + nc| Dh||* + 2nc?||h]*).

It is clear from the above expression that if ¢ > 0, then H(h, h) > 2nc?|h|?. Suppose
¢ < 0. Since |[dPh|? > 0, using Lemma 4.1(v) we have that the least eigenvalue of the
rough Laplacian is bounded below by —nc. Now,

|D* Dh + nch||* — ne(D*Dh + nch, h)

| D*Dh||*> + nc||Dh|)? =
> —nc(D*Dh, h) — n*c?||h|?.

Hence H (h, h) > 2nc?|h2.
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4.3 Conformal variations

Next we study H on the space of conformal variations of g. Consider any f in C°°(M)
with [ fdv, = 0. In this section we prove that there exists €; > 0 such that

H(fg, fg) = eill fgl* = nelll f1%.

First we compute each term appearing in the expression of H in (4.1).
p _
RPNl =200 = 1) pe? | RIP™ f frdv,. 43)
M

Applying Lemma 4.1(vi) we have

(IRIP),(fg) = —2pc|RIP7*(tr D8y fg — Atrfg + (n — Dctrfg)
= —2pc|RIP2(Af — nAf + n(n — 1)ef)
= —2pIRIP*(n — De(nef — Af).
Consequently,
tr((IRIP72)(fg)g) = —2cn(n—1)(p —2IRIP*(ncf — Af)
_ (P - 2) p—2
= IRIPTHAS = nef).
Hence
- fj IRI*(IRIP™? (fo)g., f&) = —2pc(p—2)(n — D|R|P~> [ndfn2
—nc / f2dvgi| (4.4)
M
and
1
L ((URI"Y g, fg) = —pne(n — DIIR|P? fM (—fAf + nef?)dvg

npe(n — D|R|P~> [Ildf|I2 —nc f fzdvg} . (45)
M
From Lemma 4.1(i),
tr(R) (fg) = =2¢%n(n — 1) f + 4c(n — DAS.
Therefore,
—pIRIPT2((R) (fg). fg) =—2cp(n—D)||R|IP 2 [2||df||2—cn fM fzdvg]
(4.6)

Next, we compute the 4th term in the expression of H in (4.1). By a straightforward
computation, we have the following identity:

DdPh(x,y.z,w) = DI _h(y, w) — DI ,h(y,2).
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This yields

(R, DdP fg) ZZRijkdengijkl

= 2 Rijij (D} £2) i — (D} £2)if)
= 2c) (trDdtrfg + tr D8y fg)

= —2c(n—1)Af.

Therefore,

— pURIP2YR, DAP fg) = —p /M(|R|"—2)}g(fg>(1e,Dd’)fg>dvg

4p(n — D*(p = 2IRIPAIALI
—nclldf|2. (4.7)

Next using Lemma 4.1(v) we have

1r8PdP fg

2trD*D(fg) — 2tr Dé¢(fg)

2(A(tr(fg)) +trDdf)
= 2(n — DAS.

This identity combining with Lemma 4.1(ii) implies that

P W(ser f3) = cn —2) /M (tr8PdP fg) fdvg

+2nc f (tr DAf) fdvg + 2n’c / fAfdvg
M M
de(n — D \dfII.

Therefore,
—plIRIP2(P W(rg), f8) = —4pc(n — D?|R|IP~*|df||>. (4.8)

Next, we compute the remaining term appearing in the expression of the Hessian. From
Lemma 4.1(iv) we obtain

r =

{200 — Defg — 28,8, fg — Ddtrfg + D*Df g}

{2c(n — 1) fg +2Ddf —nDdf + Afg}

el S el N Y

= 2{2c(n — 1 fg—m—2)Ddf + Afg}.

By a simple calculation using Lemma 4.1(v) we have
§PdP fg = 2(Afg + Ddf).
Therefore,

(7, 8PdP fg) = @n—3)(Af, Af)— (n—=2)(Ddf, Ddf)+2c(n—1)*(df, df)
= (n— 1)(Ddf, Ddf)+ (n — 1)(4n — 5)c(df, df).
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Using Bochner—Weitzenbok formula on the space of one forms we have
Adf = D*Ddf + (n — 1)cdf.
This implies
IAfI? = (8df.8df) = (Adf.df) = |DAf|* + (n = Delldf|)*.
Therefore,
(7.67dP fg) = (n = DIASI? +cn = DGBn — ) df |- 4.9)
Hence combining all the equations from (4.3) to (4.9) we have

H(fg, fg) = pIRIP (@l AfI> = be(Af, £ +d3EN£IP),

where

a:(n—l)+2(p—2)<l—’11),
b=4n—1)(p—1),
d=nn—1)2p—n).

Consider the polynomial, ¢ (x) = ax®> — bx 4 d. Suppose f be an eigenfunction of the
Laplacian corresponding to the eigenvalue Ac. Then

H(fg, f&) = qANfI%

To prove our claim it is sufficient to prove that g (1) > 0. Notice that

d
q(x):(x—n)(ax— )
n

Let ¢ > 0. Since a‘ln < n and the first eigenvalue cAj of A satisfies A1 > n we have that

qg(X) = 0.qg(x) = 0if and only if A = A; = n. This implies that (M, g) is a sphere with
the standard metric. In this case, the eigenfunctions are the first-order spherical harmonics.
These functions satisfy 82,‘51 f = Ddf = — fg. Hence the proof follows.

If ¢ < 0, then the proof immediately follows from the expression of H(fg, fg). (]

Next to obtain the stability of R, for space forms it is sufficient to prove that
H(h, fg) = 0 be a TT-tensor for any i and f € C°°M. From [5], the decomposi-
tion (1.1) is preserved by the rough Laplacian. Hence, it is easy to see from Lemma 4.1
that

tr((R) (h)) = tr(8PdPh) = tr(§°Wy) = tr(7) = 0
and
8¢ () = 0.

This implies that t7(§?d”7;) = 0. Lemma 4.1(vi) implies that (|R|?)’(h) is also zero.
Hence,

H(h, fg)=0.
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5. Second variation at product of space forms

In this section we prove the stability of R, for product of space forms of same type for
certain values of p. Let (M{", g1) and (M}", g2) be two closed Riemannian manifolds
with dimension m > 3 and constant sectional curvature ¢ # 0. Let (M, g) = (M; X

Ms, g1 + &2).
From Lemma 4.57(ii) in [3], we have the following orthogonal decomposition of

TeMy:
T, My =1Ims; & C°(M) & (8, '(0) N1ry ' (0)) (5.1

Let E1 = {e1,€2,...,epn}and Ex = {ey+1, - . ., €2} denote normal basis at some points
p1 and py corresponding to (M{", g1) and (M}, g2) respectively. The curvature R satis-
fies the following properties:

(Rl) R(eis €j, €, e]) = —R(e,-, ej,ej, ei) =c, when {eivej} C Ek,k — 172
(R2) R(em, en, ei,e;) =0, otherwise.

A traceless symmetric tensor splits as

h=h+ fg1+h+hy— fg, (5.2)

where h is tangent to the first factor, A, is tangent to the second factor and h is non-
zero only for the mixed set of vectors and f € C*®°(M; x M;). This decomposition is
preserved by the rough Laplacian and

tr(hy) = tr(hy) = tr(h) = 0.

Lethe C*(M)-g&® (8;1 (0) N tr~1(0)). Then we have that dgh = —}ldtrh. Moreover,
if h is a TT-tensor, then

858gh1 = 858ghy = 838k =0,
To prove the theorem, we need the following lemma.

Lemma 5.1.
R'(h) = 48%83h + D*Dh,
R'(h1) = 2(m + 1)c*hy + 2¢D*Dhy — 4c8}8h1,
R'(fg1) = —2(m — 1)c? fg1 + 2¢c[A1 fg1 — (m — 2)83df1],

where df) is the component of df along the first factor.
Proof. From the proof of Lemma 4.1(1),

R//(h)pq = - Z Rinn (Rpminqnij + Rpiijqinj + Rpiijqijn)

m,n,i, j

+ Z R'() pijk Ryijk + Z Rpijic R (1) gijik-
i)k i.j.k
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Using (R1) and (R2) we have that

Z ﬁmn (Rpminqm'j + Rpiijqinj + Rpiijqijn) =0

m,n,i, j
and Zi’j’k R’(ﬁ),,,-ijq,-jk is non-zero only if {e,, ¢;, e, ex} C Ey, k = 1,2. Now,
23 R (W)pigi = (D} h)pi + (Dih)gi — (D3 h)ii — (D7) pg
i
+ hij Rpiqj — hqjRpiij].
It is clear from the above expression that R'(h), = R'(h); = 0. Hence
~ ~ 1 ~
> R () piji Ryiji = *8585h + , D" Di.
Therefore,
R'(h) = 48384h + D*Dh.
Next using (R1) and (R2) again we have

Z hlmn(Rpminqnij + Rpiijqinj + Rpiijqijn) =2(m — 3)C2h1pq-

m,n,i, j

If ey, eq € Ea, asimple computation shows that 3 ;.o R'(h1)piqi = 0.1f e, ¢4 € E,
then

D R () pijkRyiji = 2¢ Y R'(h1)pigi = c[D*Dhy
i€k
+2(m — 1)chy — 2858h1].

Hence

R'(h1)pg = 2(m + 1)c*hipg + 2cD*Dhipg — 48585h1.

Similarly,
R'(fg1) =2(m + 1)c* fg1 — 4mc? fg1 + 2c[—mDdfi +28%dfi + A1 fg1l.
O
Next the following lemmas follow from the proof of Lemma 5.1 and Lemma 4.1.
Lemma 5.2.
i = ;[D*Dﬁ — 2838,h],
Fp, = ;[ZC(m — 1h; + D*Dh; — 28;‘8gh1],

- 1
T'fer = 2[2C(m - Dfg +28;fdf1 —mDdf + Afgi].
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Lemma 5.3.
(IR =0,
(IRIP)'h1 = —4pc|R|P2tr(8385h1),
(IRI?Y (fg1) = 2cp(m — D|RIP 2 (A f — mcf) .
Lemma 5.4.
8PdPh = 2D* Dh + 2c(m — 1)h — 2838,
8PdPhy = 2D*Dhy + 2mchy — 2838h1,
8PdP fg1 = 2Afg1 +28%df:.
The proof easily follows from the proof of Lemma 4.1(v).
Lemma 5.5.
GPWie =0,  fork=1,2,
(Wi dPh) = (m = DeldRI? + K. where 0< K < 4%k,
8PWy, = c(m —2)8PdPhy,
8P Wye, = (m — 1)esPd (fg1) + 2emAy fg1 + 2cm8idfi.

Proof. From the proof of Lemma 4.1(ii) we have that for any 4, « € S2(T*M),
Z WijkdPaju = 22 (Rijrig — Riimyj — Rijiny;) @Pa)ju.
Now consider /.

D D
E Rijmid”aj = E Crim Rijmid ™ ajxi
D D
c E Criid"ajrj — ¢ E Crijd™ajp

i,jEE] j,lEEl
+c Z CriidPojij — ¢ Z CujdPaju,  (5.3)
ijeEs JA€E,
Y Cuii = dirg () =0,

i€k

As we have seen in Lemma 4.1(ii), 3~ ; /e, CrijdPajx = 0. Similarly, the last two terms
of (5.4) are also zero. Next,

Z Riiimy; @dPa)ji = Cgkleliideajkl
—(m —1)e Y Cyiyd i

clm —1) -~
=~ 5, dDhjkldDOéjkl,

E D 2 : D
Riimy jd™aju = Cﬁikalimjd okl
D } : D
= Z CﬁiklRlilid Uikl + CﬁikiRliild Akl
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=c Z CﬁikldDOlikl-i-C Z CﬁikldDOZikl-
LicE, lLicE,y

Clearly for @ = hy or a = hy, the above expression is zero. Let & = h. Then by a simple
calculation we have

N 1 N
D Dj. 2
E Ciind" hir = ~4 E |d™ hiki|

LicE; il€E
and
Dy 1 Df . 12
> Crid”hina ="y > 1dP kil
LicE; ileE
Suppose

1 D 2 Di 2
K=4/M Z |d™ hixi|” + Z |[d”hix1|” | dvg.

l.JEEl i,lEE]

Then0 < K < }‘ ||dDﬁ |%. Hence the result follows.

Next, consider 4. It is easy to see using the formula for Cp,, that Cy,;ji is zero if {e;,
e;, e} intersects E5. Using this and following a similar computation as in Lemma 4.1(ii),
we get the result.

Now, consider 4 = fgj. In this case, a straightforward calculation gives

Z(Rijl'[ikl_Rlil'likj)dDajkl:2 chiiRijidiajkj+ZCkij RijijdPaig.
Since Cy;; = 0 whene; € E»,
2)  CuiiRijijd ajiy = 2¢ Y Criid ey
i.jeE
=cim—1) dek(dtroqk + dgorif).

Since Crij = 3 (dfigij + dfigrj — df;gik),

> CuijRijijd iy =c Y dfj(dirai; + 8g01).

i,jeE
Therefore,
Z(Rijl'likl — Riiny )dPaji = em dek(dtmlk — gai1k)
C
> Riiiny @) ju = = (m = Dd® (fgn) jrud "t
Hence

8P Wio = (m — 1)csPd” (fg1) +2emA: fg1 + 2em8ydfi.
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Next we study the stability of R, for product of space forms. First we study the action
of H on TT-tensors.

5.1 Transverse-traceless variations

Consider h € 8;1(0) Ntr=1(0). Suppose h = hy + h+hy+ fg1 — fg2. Itis easy to see
using the above lemma that

H(hy, hy) = H(hy, h) = H(ha, h) =0
and

H(hy, hy) = pIRIP2[ID* Dhy||* + me||Dhy|* + 2(m — 2)c? ||y |12
H(ha, ha) = p|RIP2[|D* Dhol|* + mc||Dha||* + 2(m — 2)c? || ha |1
H(h, h) = pIRIP2[|D* Dh||* +c(m—1) | Dh|*+2¢*(m—D)||7]|> -

—_

k]

—_

k]

K].

[\S RN}

Using similar arguments as in §4.1, we have €] and €3 such that H(h1, h1) > €1/l ||2
and H (ha, hy) > e3||h2 ||2. Now, using the estimate for K given in Lemma 5.1(v), we have

-~ - 5 ~ 7 ~
H(h, h) > p|R|P‘2[||D*Dh||2+c(m — 4) IDR|? + 4c2(m — DAl

If ¢ > 0, then it is clear from the above expression that
H(h, ) = eh].

Suppose ¢ < 0, then c(m — i) > c(m — 1). Now, [|[dPh|? > 0 implies that
ID* Dh||* + ¢(m — 1)|| Dh||* = 0.

Hence
H(h, h) = 3|,

Using bi-linearity of H, we have

H(h,h) = H(hy, h\)+ H(hy, hy) + H(h, h) + H(fg1, fg1)
+H(fg, fg2) + H(fg1, fg2)- (5.4)

Next we shall compute the remaining terms of (5.4). From Lemma 5.1 we have

(R)(fg1), fe1) = —2(m — DA fa1ll> + 2¢[{A1 fe1, fg1)
— (m = 2)(8%df1. f1)]
= —2¢%m(m — DI fII* + de(m — Dldfi 1%,

where dfj is the component of df along the tangent space of M.

(Fro1. 8PdP fg1) = e(m—1) fg1+285dfi—mDdf +Afg1.Afgi+85df1)
=2cm(m — D[df > + (m — 3)(ALf, Af) + m||Af|
—(m = 2)|185df1l> = 2¢(m — V|df1]]?
=2em(m — DIdf > + 2m — 3| A f1I
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+30m — D(ALf, Ao f) +m| Ao f |17
—(m = 2)|185df1* = 2c(m — Dlldfi]*.

Using Bochner—Weitzenbdk formula on the space of one forms we have

Adfi = D*Ddf) + (m — D)cdfi.
Next, a simple calculation yields the following identity for a one-form w,

285.8;0) +8dw =2D*Dw. (5.5)
Using this identity we have

I83df111% = (885 (df1). dfi) = |ALfIP = c(m — Ddfirl>.

Therefore,
(Frer»8PdP fg1) = 2em(m — D|df|* 4 (m — DAL fI?
+e(m — 1) (m — D dfill* +30m — D(ALf, Ao f)
+ml| Az fI%.
Next,
(6P Wrg,. fa1) = 2c(m — DI(Afg1 + 85dfi, fg1) +2cm(A1fg1, fg1)
+2em(8;dfi, fg1)
= 2cm(m — Ddf 1?4 2c(m — D2|ldf1 ]I,
(R, D fg1) = 2¢ Y (Dd® fg)ijij +2c Y (DA fen)ijij
i,j€E] i,j€Er
= 2c Y (D fg1)jj — (D} £8V)ij)
i,jeE,
= —2c(m— 1AL f.
Therefore,

((IRIP™2)(fg1)R,DAP fg1)=—4c*(p—2)(m—1)*RI" A\ f —mcf, A f)
1
=— (p—2)<1—m)IR|”2[IIA1f||2—mc||df1||2],
1
. IRZ((IRIP™2) (fg1)-(g1 + &2), fg1)

1
=c(p—2) (1 - m) IRIP72((A1f —mef)gr, fg1)
=c(p —2)(m — DIRIP2[Idf1 1> — mell £1171,

1
5 (ARIPY (fg1)g1, fg1) = mpe(m — DIRIP21dfi1? — mell £1%1.
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Combining all these results, we have

H(fg1, fg1) = pm — DIRIP[al A1 fI? — belldfill* + de* | f11]
+pIRIP2[3(m — D(ALf, Ao f) +mllAa £II17],

where a = rh(m+p—2),b=2(p+1),d=m(p—m+2).
Performing similar computation we have

H(fg1, fg2)=pIRIP2[2(A1 f, Ao f)+m(m—Del|df||* —m*(m—1D)e?| f11]
1
+p(p—2)<m—1>|R|f’—2[m <A1f,Azf)—CIIdeIZerczIIfIIZ}

and

H(fg, fg2) = pm — DIRIP[al|lAsfI* — belldf2)* + de? || £11]

+pIRIP2[3(m — D(ALf, Ao f) +ml| Ay fI17].

Therefore,

H(fg1—fg2 fg1—fg)=H(fg1, fg1) —2H(fg1, fg2) + H(fg2, fg2)

=pIRIP Har| AL fII* + arll Az f P
+biclldfIP+2di 2N fIP1+ pIRIP2urA f, s f ),

where

ar=m—1)a+m,
2

uy = {3m?>—=3m—2— p(m— 1)},
m

by = =2(m — 1)(m + 3),

dy =4m(m — 1).

Case 1. ¢ > 0. We know that the first eigenvalue of the Laplacian is greater than mec.
Suppose, f be an eigenfunction corresponding to the eigenvalue cA of the Laplacian of
(M1 x M3, g1+g2). Then f = f1fr and A = 1+ pp where f1 and f> are eigenfunctions
of the Laplacian for (M1, g1) and (M3, g2) corresponding to the eigenvalues ci1 and citn
respectively. Therefore,

(ALf, Ao f) = Frapal fI%

Since u1 > 0 for p < 2m, we have

H(fg1—fg2. fg1—f8)2 = pIRIP[ar | A1 f1I? + a1 | Axf |12
+ biclldfI* + dic* )l f112]
> pIRIP ar| A1 fIP+bicldfill*+dic* ] £11]
+pIRIPar| Az f I +biclldfil*+dic? | £17].

Now consider the polynomial
q1(x) = a1x2 +bix +d.
Note that

H(fg1 — fg2, fg1 — fg2) = p|IRIP"2(q1 (1) + q1 () L F 112
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So, it is sufficient to prove that g1 (x) > O for x > m.
qi(x) = 2a1x + by.

By a simple computation we have that g; (x) > 0 for x > m and g1 (m) > 0.
This completes the proof. O

Case?2.c < 0.Since by < 0and u1(A1 f, A2 f) > 0 we have that

H(fg1 — fg2, fg1 — fg2) = 2pIRIP2d || fII.

It is easy to see from Lemma 5.1 that H is diagonalizable by the decomposition (5.1).
Therefore to complete the proof it is sufficient to show that there exists an €3 > 0 such

that H(fg, fg) > esll fgl*.

5.2 Conformal variations

Consider f in C*°(M; x M3). Using the computations in 5.1 we have

H(fg1+ fg2. fg1+ fg) = H(fg1. f81)+2H(fg1, fe2)+H(fg2, fg2)
= pIRI" a2l AfI? + ua (A1 £, Axf)
+baclldf I* 4+ doc? I £ 1121,

where

ax = ay, uy =2m,
by = —2(m — DQ2p —m — 1),
dy =4m@m — 1)(p — m).

Since up > 0,

H(fg1 + fg2. f81 + f82) = pIRIP*[azl AfI* + baclldf > + dac?| £ %]
Case 1. ¢ > 0. Consider the polynomial

@2 (%) = axr? 4 bor + da.

A simple computation gives if p < 2m, then 2aym + by > 0 and g2(m) > 0. Using the
argument as in 5.1, the proof follows.

Case 2. ¢ < 0. When p > m it is easy to see that b, < 0 and d» > 0. Therefore,

q2(2) > 0. This completes the proof. O

6. Local minimization

To obtain local minimization property for R ,, we follow the techniques used in [7]. First
we consider the scale-invariant functional defined by

Rp(®) = (V) * " Ry(g).
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A simple calculation shows that

- 2 p 1 2p_
VRy(g9) =V 'VR,(g) + (n - )v "R ,(9)g

2

Itis easy to see that g is a critical metric for R, o4, if and only if it is critical for 7@,,. Let
H ; denote the second derivative of R p at g. Recall that

W = (Im8})" N Ty M.

Let (M, g) be a critical point for ﬁp. (M, g) is L>2- stable for ﬁp, if there exists € > 0
such that for any h € W,

Hy(h, h) = €||h]|%,,.
where

181175, = ID*R) + | D] + || A

PROPOSITION 3

Let (M, g) be a closed Riemannian manifold. If (M, g) is L*?-stable for 7~3p thenitis a
strict local minimizer for R .

We need the following lemma to prove the proposition.

Lemma 6.1. For each metric § = g + 0 in a sufficiently small C'*1%-neighborhood of
g (I = 1), there is a C'*>%diffeomorphism ¢ : M — M and a constant c such that

0=ed*s—g
satisfies

b‘gé =0 and /tr(é)dvg =0.
Moreover, we have the estimate

16l crira < ClO1llcrone.
Proof. Consider the operator

(SgS; T*M — T*M.

Since this is an elliptic operator, the lemma follows from the proof of Lemma 2.10 in
[7]. O

We denote by A x B any tensor field which is a real linear combination of tensor fields,
each formed by starting with the tensor field A ® B, using the metric to switch the type of
any number of 7*M components to 7 M components, or vice versa taking any number of
contractions, and switching any number of components in the product. For any two tensor
A and B we have |A % B| < C|A||B]| for some constant C which will depend neither on
A nor B.
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Lemma 6.2. There exists a neighborhood V of g and a positive constant Cy such that for
anyg €'V,
IRp(&) = Rp(@) < C1llg = gllgre- (6.1)

Proof. Let g = g+ 0 and T be a tensor. We have the following relation between the
connection of g and g:

DgioT = DT + (g +6) "' % D6 % T. (6.2)
The curvature of g and g related by

Rg+0) =R@+@+0) "'« D0+ (g+0 7+ (DIxDH).  (63)
We also have the following formula:

g+ —g =g+ 070, (6:4)
The lemma follows by using some standard techniques and the above equations. O

Lemma 6.3. Let g be a Riemannian metric on M with unit volume. There exists a
neighborhood U of g in M such that forany g € U and h € W,

|Hz(h, h) — He(h, h)] < Cl1g — gllgaa Il 22
Proof. By a straightforward computation we have

Hy = —2(VRp, hoh)g + (VR,) (h), h)g
- 1
= 2[p(IRIP*R, DdP (h o h)) + p(IRI” >Ry, h o h) — 5 (IRI, |h|*)]

’ P 1
+((VR)'(h), h) — (n ~H

) Rp(@lIAl?.
We observe from the expression of H that I:I(g) = fM f|R|1’_2dvg, where f € C*°(M)
and [, fdv, is the second derivative of R, Using the previous lemma it is sufficient to

prove the lemma for the second derivative of 7@2;
Suppose H denotes the second derivative of Ro. We have

(R,DdP(hoh) =g 'sxg 'xg ' xg ' % Rx (D*h + Dh % Dh),
(Ié,hoh):g_l*g_l*g_l*g_l*R*R,
(Rp, DdPh) = g ' s g Vs g7 g7 (D?h %« D*h 4+ h % R),

(Wi, dPh) = fM(g_l xg ' x g7 x g7 % R% Dh x Dh)du,,

(RY(h),h)y =g "% g "xg ' sxg "« Rxh*(Rxh+ Dh),
(RIPY () = |RIP>xg xg g x g ' s (Rx D> h + Rx Rxh),
(8PY (MD*(Ry =g ' xg ' xg g ' xd®hxhxR.

Combining the above equations we obtain the required result. (]

Proof of Proposition 3. Choose a neighborhood U of g in C>%-topology such that the
following conditions hold:

(i) Lemmas 6.1 and 6.3 hold on U.



On the stability of R p 407

(ii) Let § = g + 61 € U. Then using Lemma 6.1 we have § satisfying the conditions
given in Lemma 6.1. We can assume g + 10 € U forall ¢ € [0, 1].

(iii) Since g is L>?-stable, we can assume that for any § € U with V(3) = V(g),
Hy(h,h) > Oforall h € W.

We have
Rp(g+6) =Rp(e¢*3) =Rp($*3) = Rp(3) = Rp(g +61).
Define
y() =g +10,
y(t) € U fort € [0, 1]. Let
a(t) =R, (y ().
Then a(0) = R,(g), a(l) = R, (g + 6) and a’(0) = 0. Since § € W,
a"(t) = H,1(8,6) > 0.

Therefore,
1,1
a(l) —a(0) = / / a’(st)dsdt > 0.
0 Jo

If 7@1, (&= ﬁp (), then & = 0. Hence § is isometric to g. This completes the proof. [J

The following corollary is an immediate consequence of this proposition.

COROLLARY 6.1

Let (M, g) be a closed Riemannian manifold with dimension n > 3. If (M, g) is one of
the following then g is a strict local minimizer for R, for the indicated values of p:

(1) A spherical space form and p € [2, 00).

(ii) A hyperbolic manifold and p € [, o0).
(iii) A product of spherical space forms and p € [2, n].
(iv) A product of hyperbolic manifolds and p € [}, n].

Proof. In light of Proposition 3, it is sufficient to prove that (M, g) is L>?-stable. Define
IRIF = IID* D> + | DR|* + |||,

From the proof of Theorem 1.1, we have that there exists a positive constant k such that
H(h, h) > k||h||% for all h € WW. When (M, g) has unit volume one can easily check that
H (h, h) = H (h, h). Hence to prove the corollary it is sufficient to prove that ||.|| ; 22-norm
and ||| ;-norm are equivalent.

Since M is compact and D* D is an elliptic operator using elliptic estimate, we have
C > 0O such that

|12, < CLID*Dh|? + ||h]*].
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Therefore, [|h]|7,, < C|l]7. Since at every point |D*h| > |D*Dh| we have |||} <
l1h ”LM' Hence, the proof follows. [l

As a consequence, we have the following:

COROLLARY 6.2

Let (M, g) be a spherical space form or product of spherical space forms. There exists a
neighborhood U of g in M such that for every go € U,

(i) IfRp(g0) < Ry(g) forany p > 7, then V(go) > V(g).

(i) IfRp(go) < Rp(g) forany p € [2, %), then V(go) < V(g).

(iii) If Rp(go) = Rp(g) for any p € [2,00) and V(go) = V(g), then gy is isometric
to g.

COROLLARY 6.3

Let (M, g) be a compact hyperbolic manifold or product of compact hyperbolic mani-
folds. There exists a neighborhoodV of g in M such that for every g1 € V,

() IfRp(g1) < Rp(g) forany p € (5,n), then V(g1) > V(g).
(i) If Rp(g1) = Rp(g) forany p € [, n] and V(g1) = V(g), then g is isometric to g.

Remark 6.2. Consider the Lie group SU (2) with bi-invariant metric g which is isometric
to the standard sphere $3. Let g(1), t > 0 denote the volume normalized Berger’s collaps-
ing metrics on SU (2). Suppose R,, (1) is the restriction of R,, on g(t). Since R,, (1) >0

ast — 0 and R,, (t) has a minima at g(1), R,, (#) has a maxima g (#,) for some ¢, between

0 and 1. g(#,) is precisely the critical metric for R p which is exhibited by Lamontagne in
[8] for p = 2.
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