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Abstract. We consider the Riemannian functional Rp(g) =
∫
M |R(g)|pdvg defined

on the space of Riemannian metrics with unit volume on a closed smooth manifold M
where R(g) and dvg denote the corresponding Riemannian curvature tensor and vol-
ume form and p ∈ (0,∞). First we prove that the Riemannian metrics with non-zero
constant sectional curvature are strictly stable for Rp for certain values of p. Then we
conclude that they are strict local minimizers for Rp for those values of p. Finally gen-
eralizing this result we prove that product of space forms of same type and dimension
are strict local minimizer for Rp for certain values of p.
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1. Introduction

Let M be a closed smooth manifold of dimension n ≥ 3 and M denote the space of
Riemannian metrics on M endowed with the C2,α-topology for any α ∈ (0, 1). In this
paper we study the following Riemannian functional:

Rp(g) =
∫

M

|R(g)|pdvg

where R(g) and dvg denote the corresponding Riemannian curvature and volume form.
Since the functional is not scale-invariant, we restrict the functional to the subspaceM1 ⊂
M consisting of metrics with unit volume. For p < n

2 , it was pointed out by Gromov that
infg Rp|M1 = 0 [1]. Note that for p = n

2 the functional is scale-invariant. In dimension
four, the Chern–Gauss–Bonnet theorem implies that Einstein metrics give an absolute
minimum 8π2χ(M) for the functional R2, where χ(M) denotes the Euler characteristic
of M . In [2], Anderson conjectured that if M be a closed hyperbolic 3-manifold then
infg R 3

2
is realized by the hyperbolic metric. In this paper, we study the local minimizing

property of Rp for p ≥ 2 at some certain critical metrics.
Before stating our results we recall a canonical decomposition of tangent space of M.

From Lemma 4.57 in [3], if M is a compact Riemannian manifold, we have the orthogonal
decomposition of the tangent space of M at g (which is the space S2(T ∗M) of symmetric
2-tensors on M):

TgM = S2(T ∗M) = (Im δ∗g + C∞(M).g)⊕ (δ−1
g (0) ∩ Tr−1

g (0)). (1.1)
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Here Im δ∗g is precisely the tangent space of the orbit of g under the action of the group

of diffeomorphisms of M . Since TgM1 = {h ∈ S2(T ∗M)| ∫
M
tr(h)dvg = 0}, we have a

corresponding decomposition

TgM1 = (Im δ∗g + C∞(M).g) ∩ TgM1 ⊕ (δ−1
g (0) ∩ Tr−1

g (0)). (1.2)

M is an open convex subset of S2(T ∗M) equipped with C2,α-topology. Since S2(T ∗M)

is a vector space we can differentiate Rp on M along any vector in S2(T ∗M). ∇Rp(g)

in S2(T ∗M) is called the gradient of Rp at g if for every h ∈ S2(T ∗M),

d

dt |t=0
Rp(g + th) = R′

p|g.h = 〈∇Rp(g), h〉.

g is called a critical point for Rp if the component of ∇Rp(g) along TgM1 is zero.
By a standard technique one can prove that every compact irreducible locally symmetric
space is a critical point of Rp. Let g be a critical point of Rp. The Hessian H of Rp is a
symmetric bilinear map,

H : TgM1 × TgM1 → R

defined by

H(h1, h2) = ∂

∂t

∂

∂s
Rp(g(s, t))|t=0,s=0,

where g(s, t) is a two-parameter family of metrics in M1 with g(0, 0) = g and
∂
∂t
g(t, 0)|t=0 = h1, ∂

∂s
g(0, s)|s=0 = h2.

Let W denote the orthogonal complement of Im δ∗g in TgM1.

DEFINITION 1.1

Let (M, g) be a critical point for Rp|M1 . The metric g is called infinitesimally rigid for
Rp if the kernel of the bi-linear form H restricted to W ×W is zero.

In [9], Muto proved that (Sn, can) is infinitesimally rigid for R2. For p = 2, the appli-
cation of the differential Bianchi identity simplifies the expression for the gradient of R2.
So it is easier to study the second variation of R2 than Rp for any arbitrary p, at a criti-
cal point. However it is not known that R2 is infinitesimally rigid even for any arbitrary
irreducible symmetric space.

DEFINITION 1.2

Let (M, g) be a critical point for Rp. (M, g) is strictly stable for Rp if there is an ε > 0
such that for every element h in W ,

H(h, h) ≥ ε‖h‖2, (1.3)

where ‖.‖ denotes the L2-norm on S2(T ∗M) defined by g.

For a metric with constant sectional curvature or product of metrics with constant sec-
tional curvature we prove that Rp is infinitesimally rigid. In fact, we prove that Rp is
strictly stable for these metrics.
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Theorem 1.1. Let (M, g) be a closed Riemannian manifold with dimension n ≥ 3. If
(M, g) is one of the following then g is strictly stable for Rp for the indicated values
of p:

(i) A spherical space form and p ∈ [2,∞).
(ii) A hyperbolic manifold and p ∈ [ n2 ,∞).

(iii) A product of spherical space forms and p ∈ [2, n].
(iv) A product of hyperbolic manifold and p ∈ [ n2 , n].
Moreover, in all these cases, H is diagonalizable with respect to the decomposition (1.2),
for all p ∈ [2,∞).

The product of a spherical space form and a compact hyperbolic manifold with the
same dimension is a critical point of Rp but we are not able to prove that this is stable
for Rp. From the proof of the theorem we observe the following Proposition, which gives
some information in the hyperbolic case when p ≤ n

2 .

PROPOSITION 1

Let (M, g) be a compact hyperbolic manifold with the sectional curvature c. If the first
positive eigenvalue of the Laplacian λ1 satisfies the inequality

λ1 >
|c|(n− 2p)

n+ 2p + 4
,

then g is strictly stable for p ∈ [2, n
2 ).

DEFINITION 1.3

Let (M, g) be a critical metric for Rp|M1 . Then g is called a strict local minimizer if
there exists a C2,α-neighborhood U of g in M1, such that for all metrics g̃ ∈ U ,

Rp(g̃) ≥ Rp(g).

The equality holds if and only if g̃ = φ∗g for some C3,α-diffeomorphism φ : M → M .

Since M and its sub-manifolds are Fréchet manifolds modeled on S2(T ∗M), the usual
inverse function theorem can not be applied. Using the Slicing Lemma 2.10 in [7], we
observe that if (M, g) is a closed Riemannian manifold such that g is strictly stable then
it is a strict local minimizer for Rp. Applying Hölder inequality one can prove that if g
is a strict local minimizer for R2 then it is also a strict local minimizer for Rp for p ≥ 2.
But it does not imply strict stability of Rp at g.

Similar results have been proved by Besson et al. in [4] for all irreducible locally
symmetric spaces of non-compact type for the functional

∫

M

|s| n2 dvg,

where s denotes the scalar curvature of g.
In §4, we study the second variation of Rp at metrics with constant curvature and prove

parts (i) and (ii) of the theorem using the decomposition (1.2). We first prove that for any
h ∈ (δ−1

g (0) ∩ Tr−1
g (0)), there exists an ε0 > 0 such that H(h, h) ≥ ε0‖h‖2 for all p ≥ 2

in this case.
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Next, we study the second variation of Rp along the conformal variations of the metric.
A positive lower bound of the Ricci curvature gives a lower bound for the first eigenvalue
of the Laplacian for compact manifolds. Using this estimate we prove that for any f ∈
C∞(M), there exists an ε1 > 0 such that

H(fg, fg) ≥ ε1‖fg‖2 (1.4)

for metrics with constant positive sectional curvature for p ≥ 2. When the sectional
curvature is negative (1.4) follows immediately for p ≥ n

2 from the expression of H(h, h)

we obtained in this section. For p < n
2 , if the first eigenvalue of the Laplacian λ1 satisfies

the inequality λ1 >
|c|(n−2p)
n+2p+4 (c is the sectional curvature), then H satisfies (1.4).

Finally, proving that H is diagonalizable by the decomposition (1.2) for all p ≥ 2, we
get the desired result.

In §5, we prove parts (iii) and (iv) of the theorem. The main steps of the proof
are similar to the proof of (i) and (ii). In §6, we study the local minimization property
of Rp.

2. Index of notations and definitions

The following notations and definitions will be used throughout this paper. Let (M, g) be
a Riemannian manifold with dimension n ≥ 3.

R, r, s: (4, 0) Riemannian curvature tensor, Ricci curvature, scalar curvature respectively.

dvg, V (g) : The volume form and the volume of (M, g).

( , ), | . | : The point-wise inner product and norm in the fibres of a various tensor bundle
M defined by g.

〈 , 〉, ‖.‖ : The global inner-product and norm defined on the space of sections of a tensor
bundle on M induced by g.

D,D∗ : The Riemannian connection and its formal adjoint.

S2(T ∗M) : The sections of symmetric 2-tensor bundle over M .

dD : S2(T ∗M) → 
(T ∗M ⊗ �2M) defined by dDα(x, y, z) := (Dyα)(x, z) −
(Dzα)(x, y), where �2M denotes the space of alternating 2-tensors and 
(T ∗M⊗�2M)

denotes the sections of (T ∗M⊗�2M). Its formal adjoint δD is defined by, δD(A)(x, y) =∑{DeiA(x, y, ei)+DeiA(y, x, ei)}, where {ei} is an orthonormal basis at a point x ∈ M .

Ř(x, y) := ∑
R(x, ei, ej , ek)R(y, ei, ej , ek).

Next, consider a one-parameter family of metrics g(t) with g(0) = g and h := ∂
∂t
g(t)|t=0.

Define, �h(x, y) = ∂
∂t
Dxy|t=0 and Ch(x, y, z) := (�h(x, y), z). A simple calculation

shows that Ch(x, y, z) = 1
2 [Dxh(y, z)+Dyh(x, z)−Dzh(x, y)], where x, y, z are fixed

vector fields on M . The suffix h will be omitted when there is no ambiguity.

R̄h := ∂
∂t
R|t=0 and r̄h(x, y) := R̄h(x, ei, y, ei).

δg : S2(T ∗M) → 
1(M) defined by δg(h)(x) = −Dei h(ei, x). Its formal adjoint δ∗g is

defined by δ∗gω(x, y) := 1
2 (Dxy +Dyx).
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L : A (0, 3)-tensor is defined by
Lh(w, y, z) : =

∑
[R(y, z,�(ei, ei), w) + R(y, z, ei,�(ei , w))

+R(z, ei ,�(y, ei), w)+ R(z, ei, ei ,�(y,w))

+R(ei, y,�(z, ei), w)+ R(ei, y, ei ,�(z,w))].
Wh := (D∗)′(h)(R) − Lh.

d , δ : The exterior derivative acting on the space of deferential forms and its formal
adjoint.

� : The Laplace operator acting on C∞(M) defined by �f = δdf = −trDdf .

3. Gradient of Rp

In this section, we compute the Euler–Lagrange equation of Rp.

PROPOSITION 2

The functional Rp is differentiable with the gradient

∇Rp|M = −pδDD∗|R|p−2R − p|R|p−2Ř + 1

2
|R|pg

and

∇Rp|M1 = −pδDD∗|R|p−2R − p|R|p−2Ř + 1

2
|R|pg +

(
p

n
− 1

2

)

‖R‖pg.

Proof.

(R′
p)g(h) =

∫

M

∂

∂t
|R|pdvg|t=0 + 1

2

∫

M

|R|ptr(h)dvg,

(|R|p)′g(h) =
∂

∂t
(|R|2)

p
2|t=0 = p|R|p−2(R,R′

g.h)− 2p|R|p−2(Ř, h).

From Proposition 4.70 in [3] we have

R′
g.h(x, y, z, t) = DyC(h)(x, z, t)−DxC(h)(y, z, t) + R(x, y, z, h�(t)).

Since R is skew-symmetric in the 1st and 2nd entries,

(|R|p−2R,R′
g(h)) = −2(|R|p−2R,DC(h)) + (|R|p−2Ř, h).

Therefore,

〈|R|p−2R,R′
g(h)〉 = −2〈|R|p−2R,DC(h)〉 + 〈|R|p−2Ř, h〉

= −2〈D∗|R|p−2R,C(h)〉 + 〈|R|p−2Ř, h〉.
The skew-symmetry of D∗(|R|p−2R) in the last two entries yields

2〈D∗(|R|p−2R),C(h)〉 = 〈D∗(|R|p−2R), dD(h)〉.
This implies that

〈|R|p−2R,R′
g.h〉 = −〈δDD∗|R|p−2R, h〉 + 〈|R|p−2Ř, h〉.
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Hence

R′
g.h = −p〈δDD∗|R|p−2R, h〉 − p〈|R|p−2Ř, h〉 + 1

2
〈|R|pg, h〉.

Therefore,

∇Rp|M = −pδDD∗|R|p−2R − p|R|p−2Ř + 1

2
|R|pg.

Now,
∫

M

tr(∇Rp)dvg =
(n

2
− p

)
‖R‖p.

Therefore,

∇Rp|M1 = −pδDD∗|R|p−2R−p|R|p−2Ř+ 1

2
|R|pg+

(
p

n
− 1

2

)

‖R‖pg.
(3.1)

�

By a standard technique one can easily check that every compact isotropy irreducible
homogeneous space, and in particular every irreducible symmetric space is a critical
point for Rp. Let (M1, g1) and (M2, g2) be two homogeneous critical points of Rp with
|R|g1 = |R|g2 �= 0. Then (M1 ×M2, g1 + g2) is a critical metric for Rp if and only if the
dimensions are the same.

4. Second variation at space forms

In this section, we study the second variation of Rp . Let (M, g) be a closed locally
symmetric space and h1, h2 ∈ S2(T ∗M). Then

H(h1, h2) = 〈(∇Rp|M1)
′
g(h1), h2〉

= −p〈(δDD∗(|R|p−2R))′g(h1), h2〉 − p〈(|R|p−2)′g(h1)Ř, h2〉
−p〈|R|p−2(Ř)′g(h1), h2〉 + 1

2
〈(|R|p)′g(h1)g, h2〉

+1

2
|R|p〈h1, h2〉 +

(
p

n
− 1

2

)

‖R‖p〈h1, h2〉.

Since g is homogeneous and R is parallel,

(δDD∗(|R|p−2R))′g(h1) = (δD)′g(h1)D
∗(|R|p−2R)+δD(D∗)′g(h1)(|R|p−2R)

+ δDD∗((|R|p−2)′g(h1)R)+δDD∗(|R|p−2R′
g(h1))

= |R|p−2(D∗)′g(h1)R + |R|p−2δDD∗R̄h1

+δDD∗((|R|p−2)′g(h1)R).

Since g satisfies eq. (3.1), Ř = 1
n
|R|2g. Hence

H(h1, h2) = −p|R|p−2(〈δD(D∗)′g(h1)R, h2〉 + 〈D∗R̄h1, d
Dh2〉)

−p|R|p−2〈Ř′
g(h1), h2〉 − p〈(|R|p−2)′g(h1)R,DdDh2〉
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−p

n
|R|2〈(|R|p−2)′g(h1)g, h2〉 + 1

2
〈(|R|p)′g(h1)g, h2〉

+p

n
‖R‖p〈h1, h2〉. (4.1)

Next, we assume (M, g) to be a Riemannian manifold with non-zero constant sectional
curvature throughout this section. We need the following lemma to prove parts (i) and (ii)
of the theorem.

Lemma 4.1. Let (M, g) be a Riemannian manifold with non-zero constant sectional
curvature c. Then

(i) (Ř)′g.h = 2c2(n+ 1)h− 4c2tr(h)g + 2c[−2δ∗gδgh−Ddtr(h) +D∗Dh].
(ii) δDWh = c(n− 2)δDdDh+ 2cDdtr(h)+ 2c�tr(h)g.

(iii) D∗R̄h = −dDr̄h − Lh.

(iv) r̄h = 1
2 [2(n− 1)ch− 2δ∗gδgh−Ddtr(h) +D∗Dh].

(v) δDdDh = 2D∗Dh− 2δ∗gδgh+ 2nch− 2ctr(h)g.

(vi) (|R|p)′g.h = −2pc|R|p−2(2trδ∗gδgh−�tr(h)+ (n− 1)ctr(h)).

4.1 Proof of Lemma 4.1

Let g̃(t) be a one-parameter family of Riemannian metrics with g̃(0) = g and g̃′(0) = h.
Choose a normal co-ordinate {ei} with respect to g. Let D be the Riemannian connection
corresponding to g.

Proof of (i) and (iv).

Řpq = g̃i1i2 g̃j1j2 g̃k1k2Rpi1j1k1Rqi2j2k2 .

Therefore,

(Řg.h)
′
pq = (g̃i1i2)′g̃j1j2 g̃k1k2Rpi1j1k1Rqi2j2k2+g̃i1i2(g̃j1j2)′g̃k1k2Rpi1j1k1Rqi2j2k2

+g̃i1i2g̃j1j2(g̃k1k2)′Rpi1j1k1Rqi2j2k2+g̃i1i2g̃j1j2g̃k1k2(Rpi1j1k1)
′Rqi2j2k2

+g̃i1i2 g̃j1j2 g̃k1k2Rpi1j1k1(Rqi2j2k2)
′.

Note that (g̃ij )′ = −g̃imhmng̃
nj . Therefore,

(Řg.h)
′
pq = −hmn

(
RpmijRqnij + RpimjRqinj + RpijmRqijn

)

+(R′
g.h)pijkRqijk + Rpijk(R

′
g.h)qijk .

Since R(0) = cI , Rijij = −Rijji = c for all 1 ≤ i, j ≤ n, and Rijkl = 0. This implies

∑

m,n,i,j

[hmn(RpmijRqnij + RpimjRqinj + RpijmRqijn)] = 2(n− 3)c2hpq

+4c2tr(h)gpq ,

(R′
g(h))pijkRqijk = (R′

g(h))piqiRqiqi + (R′
g(h))piiqRqiiq = 2c(R′

g(h))piqi
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and

(R′
g(h))qijkRpijk = 2c(R′

g(h))qipi = 2c(R′
g(h))piqi .

From equation 1.174(c) in [3], we have

2(R′
g(h))piqi = [(D2

iqh)pi + (D2
pih)qi − (D2

pqh)ii − (D2
iih)pq

+hijRpiqj − hqjRpiij ].
Using the Ricci identity we have

�i [(D2
iqh)pi+(D2

pih)qi ] = �i[(D2
iq )hpi−(D2

qih)pi+(D2
qih)pi+(D2

pih)qi]
= �i,j [hijRiqpj+hpjRiqij ]−Dδghpq−Dδghqp

= �i,j [hijRiqpj + hpjRiqij ] − 2δ∗gδghpq.

Therefore,

2(R′
g(h))piqi = hijRiqpj + hpjRiqij − 2δ∗gδghpq −Ddtr(h)pq

+D∗Dhpq + hijRpiqj − hqjRpiij .

Using R = cI again we obtain,

hijRiqpj + hpjRiqij + hijRpiqj − hqjRpiij = 2(n− 1)chpq.

Combining these two equations, the proof of Lemma 4.1(iv) follows. Next,

(Ř′
g(h))pq = −2(n− 3)c2hpq − 4c2tr(h)gpq + 4c�i,j (R

′
g.h)piqi

= 2(n+ 1)c2hpq − 4c2tr(h)gpq + 2c[−2δ∗gδghpq
−Ddtr(h)pq +D∗Dhpq ].

This completes the proof of Lemma 4.1(i). �

Proof of (ii). Let T be a (0, 4) tensor independent of t . Then using the expression for D∗
in a local co-ordinate chart and differentiating it with respect to t we obtain

(D∗)′g(h)(T )(x, y, z) = −(g̃kj )′(DkT )jxyz + g̃kj [T�kj xyz + Tj�kxyz

+Tjx�kyz + Tjxy�kz ].
Note that, � is a vector valued symmetric two form. Next,

(D∗)′g(h)(R)jkl = R�iijkl + Ri�ij kl + Rij�ik l + Rijk�il .

By the definition of Lh,

Lhjkl = {Rkl�ii j + Rkli�ij + Rli�ikj + Rik�il j + Rlii�kj + Riki�lj }.

Combining these two and using the symmetries of R we have

Whjkl = [Rij�ik l + Rijk�il − Rli�ikj − Rik�ilj − Rlii�kj − Riki�lj ].
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Pairing it with dDα for any α ∈ S2(T ∗M) and using the symmetries of R and dDα we
have

∑
Whjkld

Dαjkl = 2
∑(

Rij�ik l − Rli�ikj − Rlii�kj

)
(dDα)jkl .

R = cI gives

∑
Rij�ki ld

Dαjkl = c
∑

CkimRijmld
Dαjkl

= c
∑

Ckiid
Dαjkj − c

∑
Ckljd

Dαjkl,

∑
Rli�ikj d

Dαjkl = c
∑

CikmRlimjd
Dαjkl

= c
∑

Cjkld
Dαjkl − c

∑
Cikid

Dαlkl

and
∑

Rlii�kj d
Dαjkl = c

∑
CkjmRliimd

Dαjkl

= −(n− 1)c
∑

Cjkld
Dαjkl .

Since C is symmetric in the first two entries and dDα is skew-symmetric in the last two
entries,

∑
Cklj d

Dαjkl = 0.

Next a simple calculation gives
∑

i Ckii = 1
2dtr(h)k and

∑
j d

Dαjkj = dtrαk + δgαk .
Then

∑
Cjkld

Dαjkl = 1

2

∑
(Cjkl − Cjlk)d

Dαjkl = 1

2

∑
dDhjkld

Dαjkl .

Combining all these equations we have

δDWh = (n− 2)cδDdDh+ 2cDdtr(h)+ 2c�tr(h)g.

�

Proof of (iii). Let x, y, z, u, w be fixed vector fields. Then

(DxR)
′(y, z, u,w) = (x.R(y, z, u,w))′ − {R̄h(Dxy, z, u,w)

+R̄h(y,Dxz, u,w)+ R̄h(y, z,Dxu,w)

+R̄h(y, z, u,Dxw)+ R(�(x, y), z, u,w)

+R(y,�(x, z), u,w)+ R(y, z,�(x, u),w)

+R(y, z, u,�(x,w))}
= DxR̄h(y, z, u,w)− {R(�(x, y), z, u,w)

+R(y,�(x, z), u,w)+ R(y, z,�(x, u),w)

+R(y, z, u,�(x,w)}.
Applying the differential Bianchi identity we get

(DxR)
′(y, z, u,w)+ (DyR)

′(z, x, u,w) + (DzR)
′(x, y, u,w) = 0.
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This gives

DxR̄h(y, z, u,w)+DyR̄h(z, x, u,w)+DzR̄h(x, y, u,w)

= R(�(x, y), z, u,w)+ R(y,�(x, z), u,w)+ R(y, z,�(x, u),w)

+R(y, z, u,�(x,w))+ R(�(y, z), x, u,w)+ R(z,�(y, x), u,w)

+R(z, x,�(y, u),w)+ R(z, x, u,�(y,w))+ R(�(z, x), y, u,w)

+R(x,�(z, y), u,w)+ R(x, y,�(z, u),w)+ R(x, y, u,�(z,w))

= R(y, z,�(x, u),w)+ R(y, z, u,�(x,w))+ R(z, x,�(y, u),w)

+R(z, x, u,�(y,w))+ R(x, y,�(z, u),w)+ R(x, y, u,�(z,w)).

Consequently,
∑

(Dei R̄h)(ei, w, y, z) =
∑

(Dei )R̄h(y, z, ei, w)

= −
∑

{(DyR̄h)(z,ei,ei ,w)+(DzR̄h)(ei,y,ei ,w)}
+Lh(w, y, z)

=
∑

{(DyR̄h)(z, ei, w, ei )−(DzR̄h)(ei , y, ei, w)}
+Lh(w, y, z)

= dDr̄h(w, y, z)+ Lh(w, y, z).

Therefore,

D∗R̄h = −dDr̄h − Lh.

�

Proof of (v). From the identity (2.8) of [6], we have

δDdDhpq = 2D∗Dhpq −2δ∗gδghpq +
∑

i

(rpihiq + rqihip)−2
∑

i,j

Rpiqjhij .

(4.2)

A straightforward computation using R = cI gives the required result. �

Proof of (vi). From the proof of Proposition 2,

(|R|p)′g.h = p|R|p−2(R,R′
g.h)− 2p|R|p−2(Ř, h)

= 2cp|R|p−2
∑

(R′
g.h)ijij − 2

p

n
|R|ptr(h).

Using (iv) we have
∑

(R′
g.h)ijij = tr(r̄h)

= c(n− 1)tr(h)− trδ∗gδgh+ 1

2
(trD∗Dh − trDdtr(h))

= c(n− 1)tr(h)− trδ∗gδgh+�tr(h).

Since |R|2 = 2c2n(n− 1) we have

(|R|p)′g(h) = −2cp|R|p−2(trδ∗gδgh−�tr(h)+ (n− 1)ctr(h)).

�
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Next, we study the stability of Rp which is a space form. A symmetric covariant 2-tensor
h is called Transverse-Traceless tensor (TT-tensor) if δgh = 0 and tr(h) = 0. First, we
study H on TT-variations.

4.2 Transverse-traceless variations

Let (M, g) be a Riemannian manifold with constant sectional curvature c �= 0 and h ∈
δ−1
g (0) ∩ Tr−1(0). In this case the expression for H(h, h) reduces to

H(h, h) = −p|R|p−2[〈δD(D∗)′g.h(R), h〉 + 〈D∗R̄h, d
Dh〉 + 〈Ř′

g(h), h〉]
+p

n
‖R‖p〈h, h〉.

Using Lemma 4.1(iii) we have

H(h, h) = −p|R|p−2[〈δDWh, h〉 − 〈r̄h, δDdDh〉 + 〈Ř′
g(h), h〉]

+p

n
‖R‖p〈h, h〉.

Then from Lemma 4.1(i) we have

p

n
‖R‖p〈h, h〉 − p‖R‖p−2〈(Ř)′g.h, h〉 = 2pc2(n− 1)‖R‖p−2‖h‖2

−p‖R‖p−2{(n− 1)c2〈h, h〉
+2c〈Dh,Dh〉}

= −2pc‖R‖p−2‖Dh‖2.

Using Lemma 4.1(ii) and (v) we have

〈δDWh, h〉 = c(n− 2)〈δDdDh, h〉
= 2c(n− 2)〈D∗Dh, h〉 + 2c2n(n− 2)〈h, h〉
= 2c(n− 1)‖Dh‖2 + 2c2n(n− 2)‖h‖2.

Next using Lemma 4.1(iv) and (v) we have

〈r̄h, δDdDh〉 = −〈2(n− 1)ch+D∗Dh,D∗Dh+ nch〉
= −[‖D∗Dh‖2 + (3n− 2)c‖Dh‖2 + 2c2n(n− 1)‖h‖2].

Combining all these results we have

H(h, h) = p‖R‖p−2{‖D∗Dh‖2 + nc‖Dh‖2 + 2nc2‖h‖2}.
It is clear from the above expression that if c > 0, then H(h, h) > 2nc2‖h‖2. Suppose
c < 0. Since ‖dDh‖2 ≥ 0, using Lemma 4.1(v) we have that the least eigenvalue of the
rough Laplacian is bounded below by −nc. Now,

‖D∗Dh‖2 + nc‖Dh‖2 = ‖D∗Dh+ nch‖2 − nc〈D∗Dh+ nch, h〉
≥ −nc〈D∗Dh, h〉 − n2c2‖h‖2.

Hence H(h, h) > 2nc2‖h‖2.
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4.3 Conformal variations

Next we study H on the space of conformal variations of g. Consider any f in C∞(M)

with
∫
f dvg = 0. In this section we prove that there exists ε1 > 0 such that

H(fg, fg) ≥ ε1‖fg‖2 = nε1‖f ‖2.

First we compute each term appearing in the expression of H in (4.1).

p

n
‖R‖p‖fg‖2 = 2n(n− 1)pc2‖R‖p−2

∫

M

f 2dvg. (4.3)

Applying Lemma 4.1(vi) we have

(|R|p)′g(fg) = −2pc|R|p−2(trDδgfg −�trfg + (n− 1)ctrfg)

= −2pc|R|p−2(�f − n�f + n(n− 1)cf )
= −2p|R|p−2(n− 1)c(ncf −�f ).

Consequently,

tr((|R|p−2)′(fg)g) = −2cn(n− 1)(p − 2)|R|p−4(ncf −�f )

= (p − 2)

c
|R|p−2(�f − ncf ).

Hence

− p

n
‖R‖2〈(|R|p−2)′(fg)g, fg〉 = −2pc(p − 2)(n− 1)‖R‖p−2

[

‖df ‖2

−nc

∫

M

f 2dvg

]

(4.4)

and

1

2
〈(|R|p)′g, fg〉 = −pnc(n− 1)‖R‖p−2

∫

M

(−f�f + ncf 2)dvg

= npc(n− 1)‖R‖p−2
[

‖df ‖2 − nc

∫

M

f 2dvg

]

. (4.5)

From Lemma 4.1(i),

tr(Ř)′(fg) = −2c2n(n− 1)f + 4c(n− 1)�f.

Therefore,

−p‖R‖p−2〈(Ř)′(fg),fg〉=−2cp(n−1)‖R‖p−2
[

2‖df ‖2−cn

∫

M

f 2dvg

]

.

(4.6)

Next, we compute the 4th term in the expression of H in (4.1). By a straightforward
computation, we have the following identity:

DdDh(x, y, z,w) = D2
x,zh(y,w)−D2

x,wh(y, z).
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This yields

(R,DdDfg) = 2
∑

RijklDdDfgijkl

= 2
∑

Rijij ((D
2
iifg)jj − (D2

ij fg)ij )

= 2c
∑

(trDdtrfg + trDδgfg)

= −2c(n− 1)�f.

Therefore,

− p〈(|R|p−2)′R,DdDfg〉 = −p

∫

M

(|R|p−2)′fg(fg)(R,DdDfg)dvg

= 4p(n− 1)2(p − 2)c2‖R‖p−4[‖�f ‖2

−nc‖df ‖2]. (4.7)

Next using Lemma 4.1(v) we have

trδDdDfg = 2trD∗D(fg) − 2trDδg(fg)

= 2 (�(tr(fg)) + trDdf )

= 2(n− 1)�f.

This identity combining with Lemma 4.1(ii) implies that

〈δDW(fg), fg〉 = c(n− 2)
∫

M

(trδDdDfg)f dvg

+2nc
∫

M

(trDdf )f dvg + 2n2c

∫

M

f�fdvg

= 4c(n− 1)2‖df ‖2.

Therefore,

−p‖R‖p−2〈δDW(fg), fg〉 = −4pc(n− 1)2‖R‖p−2‖df ‖2. (4.8)

Next, we compute the remaining term appearing in the expression of the Hessian. From
Lemma 4.1(iv) we obtain

r̄ = 1

2
{2(n− 1)cfg − 2δ∗gδgfg −Ddtrfg +D∗Dfg}

= 1

2
{2c(n− 1)fg + 2Ddf − nDdf +�fg}

= 1

2
{2c(n− 1)fg − (n− 2)Ddf +�fg}.

By a simple calculation using Lemma 4.1(v) we have

δDdDfg = 2(�fg +Ddf ).

Therefore,

〈r̄ , δDdDfg〉 = (2n−3)〈�f,�f 〉−(n−2)〈Ddf,Ddf 〉+2c(n−1)2〈df, df 〉
= (n− 1)〈Ddf,Ddf 〉 + (n− 1)(4n− 5)c〈df, df 〉.
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Using Bochner–Weitzenbök formula on the space of one forms we have

�df = D∗Ddf + (n− 1)cdf.

This implies

‖�f ‖2 = 〈δdf, δdf 〉 = 〈�df, df 〉 = ‖Ddf ‖2 + (n− 1)c‖df ‖2.

Therefore,

〈r̄ , δDdDfg〉 = (n− 1)‖�f ‖2 + c(n− 1)(3n− 4)‖df ‖2. (4.9)

Hence combining all the equations from (4.3) to (4.9) we have

H(fg, fg) = p‖R‖p−2(a‖�f ‖2 − bc〈�f, f 〉 + dc2‖f ‖2),

where

a = (n− 1)+ 2(p − 2)

(

1 − 1

n

)

,

b = 4(n− 1)(p − 1),
d = n(n− 1)(2p − n).

Consider the polynomial, q(x) = ax2 − bx + d . Suppose f be an eigenfunction of the
Laplacian corresponding to the eigenvalue λc. Then

H(fg, fg) = q(λ)c2‖f ‖2.

To prove our claim it is sufficient to prove that q(λ) > 0. Notice that

q(x) = (x − n)

(

ax − d

n

)

.

Let c > 0. Since d
an

< n and the first eigenvalue cλ1 of � satisfies λ1 ≥ n we have that
q(λ) ≥ 0. q(λ) = 0 if and only if λ = λ1 = n. This implies that (M, g) is a sphere with
the standard metric. In this case, the eigenfunctions are the first-order spherical harmonics.
These functions satisfy δ∗gdf = Ddf = −fg. Hence the proof follows.

If c < 0, then the proof immediately follows from the expression of H(fg, fg). �
Next to obtain the stability of Rp for space forms it is sufficient to prove that

H(h, fg) = 0 be a TT-tensor for any h and f ∈ C∞M . From [5], the decomposi-
tion (1.1) is preserved by the rough Laplacian. Hence, it is easy to see from Lemma 4.1
that

tr((Ř)′(h)) = tr(δDdDh) = tr(δDWh) = tr(r̄h) = 0

and

δg(r̄h) = 0.

This implies that tr(δDdDr̄h) = 0. Lemma 4.1(vi) implies that (|R|p)′(h) is also zero.
Hence,

H(h, fg) = 0.
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5. Second variation at product of space forms

In this section we prove the stability of Rp for product of space forms of same type for
certain values of p. Let (Mm

1 , g1) and (Mm
2 , g2) be two closed Riemannian manifolds

with dimension m ≥ 3 and constant sectional curvature c �= 0. Let (M, g) = (M1 ×
M2, g1 + g2).

From Lemma 4.57(ii) in [3], we have the following orthogonal decomposition of
TgM1:

TgM1 = Imδ∗g ⊕ C∞(M)⊕ (δ−1
g (0) ∩ tr−1

g (0)) (5.1)

Let E1 = {e1, e2, . . . , em} and E2 = {em+1, . . . , e2m} denote normal basis at some points
p1 and p2 corresponding to (Mm

1 , g1) and (Mm
2 , g2) respectively. The curvature R satis-

fies the following properties:

(R1) R(ei, ej , ei , ej ) = −R(ei, ej , ej , ei ) = c, when {ei, ej } ⊂ Ek , k = 1, 2.

(R2) R(em, en, ei, ej ) = 0, otherwise.

A traceless symmetric tensor splits as

h = h1 + fg1 + h̃+ h2 − fg2, (5.2)

where h1 is tangent to the first factor, h2 is tangent to the second factor and h̃ is non-
zero only for the mixed set of vectors and f ∈ C∞(M1 × M1). This decomposition is
preserved by the rough Laplacian and

tr(h1) = tr(h2) = tr(h̃) = 0.

Let h ∈ C∞(M) · g⊕ (δ−1
g (0)∩ tr−1(0)). Then we have that δgh = − 1

n
dtrh. Moreover,

if h is a TT-tensor, then

δ∗gδgh1 = δ∗gδgh2 = δ∗gδgh̃ = 0.

To prove the theorem, we need the following lemma.

Lemma 5.1.

Ř′(h̃) = 4δ∗gδgh̃+D∗Dh̃,

Ř′(h1) = 2(m+ 1)c2h1 + 2cD∗Dh1 − 4cδ∗gδgh1,

Ř′(fg1) = −2(m− 1)c2fg1 + 2c[�1fg1 − (m− 2)δ∗gdf1],
where df1 is the component of df along the first factor.

Proof. From the proof of Lemma 4.1(i),

Ř′(h)pq = −
∑

m,n,i,j

hmn

(
RpmijRqnij + RpimjRqinj + RpijmRqijn

)

+
∑

i,j,k

R′(h)pijkRqijk +
∑

i,j,k

RpijkR
′(h)qijk .
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Using (R1) and (R2) we have that

∑

m,n,i,j

h̃mn

(
RpmijRqnij + RpimjRqinj + RpijmRqijn

) = 0

and
∑

i,j,k R
′(h̃)pijkRqijk is non-zero only if {ep, ei, ej , ek} ⊂ Ek , k = 1, 2. Now,

2
∑

i

R′(h̃)piqi = [(D2
iq h̃)pi + (D2

pih̃)qi − (D2
pqh̃)ii − (D2

ii h̃)pq

+ h̃ijRpiqj − h̃qjRpiij ].

It is clear from the above expression that Ř′(h̃)1 = Ř′(h̃)2 = 0. Hence

∑
R′(h̃)pijkRqijk = c2δ∗gδgh̃+ 1

2
D∗Dh̃.

Therefore,

Ř′(h̃) = 4δ∗gδgh̃+D∗Dh̃.

Next using (R1) and (R2) again we have
∑

m,n,i,j

h1mn(RpmijRqnij + RpimjRqinj + RpijmRqijn) = 2(m− 3)c2h1pq.

If ep, eq ∈ E2, a simple computation shows that
∑

i∈E2
R′(h1)piqi = 0. If ep, eq ∈ E1,

then
∑

R′(h1)pijkRqijk = 2c
∑

i∈E1

R′(h1)piqi = c[D∗Dh1

+2(m− 1)ch1 − 2δ∗gδgh1].
Hence

Ř′(h1)pq = 2(m+ 1)c2h1pq + 2cD∗Dh1pq − 4δ∗gδgh1.

Similarly,

Ř′(fg1) = 2(m+ 1)c2fg1 − 4mc2fg1 + 2c[−mDdf1 + 2δ∗gdf1 +�1fg1].
�

Next the following lemmas follow from the proof of Lemma 5.1 and Lemma 4.1.

Lemma 5.2.

r̄h̃ = 1

2
[D∗Dh̃ − 2δ∗gδgh̃],

r̄h1 = 1

2
[2c(m− 1)h1 +D∗Dh1 − 2δ∗gδgh1],

r̄fg1 = 1

2
[2c(m− 1)fg1 + 2δ∗gdf1 −mDdf +�fg1].
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Lemma 5.3.

(|R|p)′h̃ = 0,
(|R|p)′h1 = −4pc|R|p−2tr(δ∗gδgh1),

(|R|p)′(fg1) = 2cp(m− 1)|R|p−2 (�1f −mcf ) .

Lemma 5.4.

δDdDh̃ = 2D∗Dh̃+ 2c(m− 1)h̃− 2δ∗gδgh̃,
δDdDh1 = 2D∗Dh1 + 2mch1 − 2δ∗gδgh1,

δDdDfg1 = 2�fg1 + 2δ∗gdf1.

The proof easily follows from the proof of Lemma 4.1(v).

Lemma 5.5.

(δDWh̃)k = 0, f or k = 1, 2,

〈Wh̃, d
Dh̃〉 = (m− 1)c‖dDh̃‖2 + c

2
K, where 0 ≤ K ≤ ‖dDh̃‖2,

δDWh1 = c(m− 2)δDdDh1,

δDWfg1 = (m− 1)cδDdD(fg1)+ 2cm�1fg1 + 2cmδ∗gdf1.

Proof. From the proof of Lemma 4.1(ii) we have that for any h, α ∈ S2(T ∗M),

∑
Whjkld

Dαjkl = 2
∑(

Rij�ik l − Rli�ikj − Rlii�kj

)
(dDα)jkl .

Now consider h̃.
∑

Rij�ki ld
Dαjkl =

∑
CkimRijmld

Dαjkl

= c
∑

i,j∈E1

Ckiid
Dαjkj − c

∑

j,l∈E1

Cklj d
Dαjkl

+c
∑

i,j∈E2

Ckiid
Dαjkj − c

∑

j,l∈E2

Ckljd
Dαjkl, (5.3)

∑

i∈E1

Ckii = dtrg1(h̃)k = 0,

As we have seen in Lemma 4.1(ii),
∑

j,l∈E1
Ckljd

Dαjkl = 0. Similarly, the last two terms
of (5.4) are also zero. Next,

∑
Rlii�kj (d

Dα)jkl = Ch̃kjl
Rliild

Dαjkl

= −(m− 1)c
∑

Ch̃kjld
Dαjkl

= −c(m− 1)

2
dDh̃jkld

Dαjkl,

∑
Rli�ikj d

Dαjkl =
∑

Ch̃ikm
Rlimjd

Dαjkl

=
∑

Ch̃iklRlilid
Dαikl +

∑
Ch̃ikiRliild

Dαlkl
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= c
∑

l,i∈E1

Ch̃ikl
dDαikl + c

∑

l,i∈E2

Ch̃ikl
dDαikl .

Clearly for α = h1 or α = h2, the above expression is zero. Let α = h̃. Then by a simple
calculation we have

∑

l,i∈E1

Ch̃ikld
Dh̃ikl = −1

4

∑

i,l∈E1

|dDh̃ikl |2

and
∑

l,i∈E1

Ch̃ikl
dDh̃ikl = −1

4

∑

i,l∈E1

|dDh̃ikl |2.

Suppose

K = 1

4

∫

M

⎛

⎝
∑

i,l∈E1

|dDh̃ikl |2 +
∑

i,l∈E1

|dDh̃ikl |2
⎞

⎠ dvg.

Then 0 ≤ K ≤ 1
4‖dDh̃‖2. Hence the result follows.

Next, consider h1. It is easy to see using the formula for Ch1 that Ch1ijk is zero if {ei ,
ej , ek} intersects E2. Using this and following a similar computation as in Lemma 4.1(ii),
we get the result.

Now, consider h = fg1. In this case, a straightforward calculation gives

∑
(Rij�ik l−Rli�ikj )d

Dαjkl=2
∑

CkiiRijij d
Dαjkj+

∑
CkijRijij d

Dαikj .

Since Ckii = 0 when ei ∈ E2,

2
∑

CkiiRijij d
Dαjkj = 2c

∑

i,j∈E1

Ckiid
Dαjkj

= c(m− 1)
∑

dfk(dtrα1k + δgα1k).

Since Ckij = 1
2 (dfkgij + dfigkj − dfjgik),

∑
CkijRijij d

Dαikj = c
∑

i,j∈E1

dfj (dtrα1j + δgα1j ).

Therefore,
∑

(Rij�ik l − Rli�ikj )d
Dαjkl = cm

∑
dfk(dtrα1k − δgα1k)

∑
Rlii�kj (d

Dα)jkl = − c

2
(m− 1)dD(fg1)jkld

Dαjkl .

Hence

δDWfg1 = (m− 1)cδDdD(fg1)+ 2cm�1fg1 + 2cmδ∗gdf1.

�
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Next we study the stability of Rp for product of space forms. First we study the action
of H on TT-tensors.

5.1 Transverse-traceless variations

Consider h ∈ δ−1
g (0) ∩ tr−1(0). Suppose h = h1 + h̃+ h2 + fg1 − fg2. It is easy to see

using the above lemma that

H(h1, h2) = H(h1, h̃) = H(h2, h̃) = 0

and

H(h1, h1) = p|R|p−2[‖D∗Dh1‖2 +mc‖Dh1‖2 + 2(m− 2)c2‖h1‖2],
H(h2, h2) = p|R|p−2[‖D∗Dh2‖2 +mc‖Dh2‖2 + 2(m− 2)c2‖h2‖2],
H(h̃, h̃) = p|R|p−2[‖D∗Dh̃‖2+c(m−1)‖Dh̃‖2+2c2(m−1)‖h̃‖2− c

2
K].

Using similar arguments as in §4.1, we have ε1 and ε2 such that H(h1, h1) ≥ ε1‖h1‖2

andH(h2, h2) ≥ ε2‖h2‖2. Now, using the estimate for K given in Lemma 5.1(v), we have

H(h̃, h̃) ≥ p|R|p−2[‖D∗Dh̃‖2 + c

(

m− 5

4

)

‖Dh̃‖2 + 7

4
c2(m− 1)‖h̃‖2].

If c > 0, then it is clear from the above expression that

H(h̃, h̃) ≥ ε3‖h̃‖2.

Suppose c < 0, then c(m− 5
4 ) ≥ c(m− 1). Now, ‖dDh̃‖2 ≥ 0 implies that

‖D∗Dh̃‖2 + c(m− 1)‖Dh̃‖2 ≥ 0.

Hence

H(h̃, h̃) ≥ ε3‖h̃‖2.

Using bi-linearity of H , we have

H(h, h) = H(h1, h1)+H(h2, h2)+H(h̃, h̃)+H(fg1, fg1)

+H(fg2, fg2)+H(fg1, fg2). (5.4)

Next we shall compute the remaining terms of (5.4). From Lemma 5.1 we have

〈(Ř)′(fg1), fg1〉 = −2(m− 1)c2‖fg1‖2 + 2c[〈�1fg1, fg1〉
− (m− 2)〈δ∗gdf1, fg1〉]

= −2c2m(m− 1)‖f ‖2 + 4c(m− 1)‖df1‖2,

where df1 is the component of df along the tangent space of M1.

〈r̄fg1 , δ
DdDfg1〉 = 〈2c(m−1)fg1+2δ∗gdf1−mDdf+�fg1,�fg1+δ∗gdf1〉

= 2cm(m− 1)‖df ‖2 + (m− 3)〈�1f,�f 〉 +m‖�f ‖2

−(m− 2)‖δ∗gdf1‖2 − 2c(m− 1)‖df1‖2

= 2cm(m− 1)‖df ‖2 + (2m− 3)‖�1f ‖2
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+3(m− 1)〈�1f,�2f 〉 +m‖�2f ‖2

−(m− 2)‖δ∗gdf1‖2 − 2c(m− 1)‖df1‖2.

Using Bochner–Weitzenbök formula on the space of one forms we have

�df1 = D∗Ddf1 + (m− 1)cdf1.

Next, a simple calculation yields the following identity for a one-form ω,

2δgδ∗gω + δdω = 2D∗Dω. (5.5)

Using this identity we have

‖δ∗gdf1‖2 = 〈δgδ∗g(df1), df1〉 = ‖�1f ‖2 − c(m− 1)‖df1‖2.

Therefore,

〈r̄fg1 , δ
DdDfg1〉 = 2cm(m− 1)‖df ‖2 + (m− 1)‖�1f ‖2

+c(m− 1)(m− 4)‖df1‖2 + 3(m− 1)〈�1f,�2f 〉
+m‖�2f ‖2.

Next,

〈δDWfg1, fg1〉 = 2c(m− 1)[〈�fg1 + δ∗gdf1, fg1〉 + 2cm〈�1fg1, fg1〉
+2cm〈δ∗gdf1, fg1〉

= 2cm(m− 1)‖df ‖2 + 2c(m− 1)2‖df1‖2,

(R,DdDfg1) = 2c
∑

i,j∈E1

(DdDfg1)ij ij + 2c
∑

i,j∈E2

(DdDfg1)ij ij

= 2c
∑

i,j∈E1

((D2
iifg1)jj − (D2

ij fg1)ij )

= −2c(m− 1)�1f.

Therefore,

〈(|R|p−2)′(fg1)R,DdDfg1〉=−4c2(p−2)(m−1)2|R|p−4〈�1f−mcf,�1f 〉
=− (p−2)

(

1− 1

m

)

|R|p−2[‖�1f‖2−mc‖df1‖2],

1

n
|R|2〈(|R|p−2)′(fg1).(g1 + g2), fg1〉

= c(p − 2)

(

1 − 1

m

)

|R|p−2〈(�1f −mcf )g1, fg1〉
= c(p − 2)(m− 1)|R|p−2[‖df1‖2 −mc‖f ‖2],

1

2
〈(|R|p)′(fg1)g1, fg1〉 = mpc(m− 1)|R|p−2[‖df1‖2 −mc‖f ‖2].
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Combining all these results, we have

H(fg1, fg1) = p(m− 1)|R|p−2[a‖�1f ‖2 − bc‖df1‖2 + dc2‖f ‖2]
+p|R|p−2[3(m− 1)〈�1f,�2f 〉 +m‖�2f ‖2],

where a = 1
m
(m+ p − 2), b = 2(p + 1), d = m(p −m+ 2).

Performing similar computation we have

H(fg1,fg2)=p|R|p−2[2〈�1f,�2f 〉+m(m−1)c‖df‖2−m2(m−1)c2‖f‖2]
+p(p−2)(m−1)|R|p−2

[
1

m
〈�1f,�2f 〉−c‖df ‖2+mc2‖f‖2

]

and

H(fg2, fg2) = p(m− 1)|R|p−2[a‖�2f ‖2 − bc‖df2‖2 + dc2‖f ‖2]
+p|R|p−2[3(m− 1)〈�1f,�2f 〉 +m‖�1f ‖2].

Therefore,

H(fg1−fg2,fg1−fg2)=H(fg1, fg1)− 2H(fg1, fg2)+H(fg2, fg2)

=p|R|p−2[a1‖�1f ‖2 + a1‖�2f ‖2

+b1c‖df‖2+2d1c
2‖f‖2]+p|R|p−2u1〈�1f,�2f 〉,

where

a1 = (m− 1)a +m,

u1 = 2

m
{3m2 − 3m− 2 − p(m− 1)},

b1 = −2(m− 1)(m+ 3),
d1 = 4m(m− 1).

Case 1. c > 0. We know that the first eigenvalue of the Laplacian is greater than mc.
Suppose, f be an eigenfunction corresponding to the eigenvalue cλ of the Laplacian of
(M1×M2, g1+g2). Then f = f1f2 and λ = μ1+μ2 where f1 and f2 are eigenfunctions
of the Laplacian for (M1, g1) and (M2, g2) corresponding to the eigenvalues cμ1 and cμ2
respectively. Therefore,

〈�1f,�2f 〉 = c2μ1μ2|f |2.
Since u1 ≥ 0 for p ≤ 2m, we have

H(fg1−fg2,fg1−fg)2 ≥p|R|p−2[a1‖�1f ‖2 + a1‖�2f ‖2

+ b1c‖df ‖2 + d1c
2‖f ‖2]

≥ p|R|p−2[a1‖�1f ‖2+b1c‖df1‖2+d1c
2‖f ‖2]

+p|R|p−2[a1‖�2f ‖2+b1c‖df1‖2+d1c
2‖f ‖2].

Now consider the polynomial

q1(x) = a1x
2 + b1x + d1.

Note that

H(fg1 − fg2, fg1 − fg2) ≥ pc2|R|p−2(q1(μ1)+ q1(μ2))‖f ‖2.
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So, it is sufficient to prove that q1(x) > 0 for x ≥ m.

q ′1(x) = 2a1x + b1.

By a simple computation we have that q ′1(x) > 0 for x ≥ m and q1(m) > 0.
This completes the proof. �

Case 2. c < 0. Since b1 < 0 and u1〈�1f,�2f 〉 > 0 we have that

H(fg1 − fg2, fg1 − fg2) ≥ 2p|R|p−2d1c
2‖f ‖2.

It is easy to see from Lemma 5.1 that H is diagonalizable by the decomposition (5.1).
Therefore to complete the proof it is sufficient to show that there exists an ε3 > 0 such
that H(fg, fg) ≥ ε3‖fg‖2.

5.2 Conformal variations

Consider f in C∞(M1 ×M2). Using the computations in 5.1 we have

H(fg1 + fg2, fg1 + fg2) = H(fg1, fg1)+2H(fg1, fg2)+H(fg2, fg2)

= p|R|p−2[a2‖�f ‖2 + u2〈�1f,�2f 〉
+ b2c‖df ‖2 + d2c

2‖f ‖2],
where

a2 = a1, u2 = 2m,

b2 = −2(m− 1)(2p −m− 1),
d2 = 4m(m− 1)(p −m).

Since u2 > 0,

H(fg1 + fg2, fg1 + fg2) ≥ p|R|p−2[a2‖�f ‖2 + b2c‖df ‖2 + d2c
2‖f ‖2].

Case 1. c > 0. Consider the polynomial

q2(λ) = a2λ
2 + b2λ+ d2.

A simple computation gives if p ≤ 2m, then 2a2m + b2 > 0 and q2(m) > 0. Using the
argument as in 5.1, the proof follows.

Case 2. c < 0. When p ≥ m it is easy to see that b2 < 0 and d2 > 0. Therefore,
q2(λ) > 0. This completes the proof. �

6. Local minimization

To obtain local minimization property for Rp, we follow the techniques used in [7]. First
we consider the scale-invariant functional defined by

R̃p(g) = (V (g))
2p
n −1.Rp(g).
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A simple calculation shows that

∇R̃p(g) = V
2p
n
−1∇Rp(g)+

(
p

n
− 1

2

)

V
2p
n
−2Rp(g)g.

It is easy to see that g is a critical metric for Rp|M1 if and only if it is critical for R̃p. Let
H̃g̃ denote the second derivative of R̃p at g̃. Recall that

W = (Imδ∗g)⊥ ∩ TgM1.

Let (M, g) be a critical point for R̃p. (M, g) is L2,2- stable for R̃p , if there exists ε > 0
such that for any h ∈ W ,

H̃g(h, h) ≥ ε‖h‖2
L2,2 ,

where

‖h‖2
L2,2 = ‖D2h‖2 + ‖Dh‖2 + ‖h‖2.

PROPOSITION 3

Let (M, g) be a closed Riemannian manifold. If (M, g) is L2,2-stable for R̃p then it is a
strict local minimizer for R̃p .

We need the following lemma to prove the proposition.

Lemma 6.1. For each metric g̃ = g + θ1 in a sufficiently small Cl+1,α-neighborhood of
g (l ≥ 1), there is a Cl+2,α-diffeomorphism φ : M → M and a constant c such that

θ̃ = ecφ∗g̃ − g

satisfies

δgθ̃ = 0 and

∫
tr(θ̃ )dvg = 0.

Moreover, we have the estimate

‖θ̃‖Cl+1,α ≤ C‖θ1‖Cl+1,α .

Proof. Consider the operator

δgδ
∗
g : T ∗M → T ∗M.

Since this is an elliptic operator, the lemma follows from the proof of Lemma 2.10 in
[7]. �

We denote by A ∗B any tensor field which is a real linear combination of tensor fields,
each formed by starting with the tensor field A⊗B, using the metric to switch the type of
any number of T ∗M components to TM components, or vice versa taking any number of
contractions, and switching any number of components in the product. For any two tensor
A and B we have |A ∗ B| ≤ C|A||B| for some constant C which will depend neither on
A nor B.
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Lemma 6.2. There exists a neighborhood V of g and a positive constant C1 such that for
any g̃ ∈ V ,

|R̃p(g̃)− R̃p(g)| ≤ C1‖g̃ − g‖2
C2,α . (6.1)

Proof. Let g̃ = g + θ and T be a tensor. We have the following relation between the
connection of g and g̃:

Dg+θT = DgT + (g + θ)−1 ∗Dgθ ∗ T . (6.2)

The curvature of g and g̃ related by

R(g + θ) = R(g) + (g + θ)−1 ∗D2θ + (g + θ)−2 ∗ (Dθ ∗Dθ). (6.3)

We also have the following formula:

(g + θ)−1 − g−1 = −g−1(g + θ)−1θ. (6.4)

The lemma follows by using some standard techniques and the above equations. �

Lemma 6.3. Let g be a Riemannian metric on M with unit volume. There exists a
neighborhood U of g in M1 such that for any g̃ ∈ U and h ∈ W ,

|H̃g̃(h, h)− H̃g(h, h)| ≤ C‖g̃ − g‖4
C2,α‖h‖L2,2 .

Proof. By a straightforward computation we have

H̃g = −2〈∇R̃p, h ◦ h〉g + 〈(∇R̃p)
′(h), h〉g

= 2[p〈|R|p−2R,DdD(h ◦ h)〉 + p〈|R|p−2R̃p, h ◦ h〉 − 1

2
〈|R|p, |h|2〉]

+〈(∇Rp)
′(h), h〉 −

(
p

n
− 1

2

)

Rp(g)‖h‖2.

We observe from the expression of H̃ that H̃ (g) = ∫
M f |R|p−2dvg , where f ∈ C∞(M)

and
∫
M
f dvg is the second derivative of R̃2. Using the previous lemma it is sufficient to

prove the lemma for the second derivative of R̃2.
Suppose H̃ denotes the second derivative of R̃2. We have

(R,DdD(h ◦ h)) = g−1 ∗ g−1 ∗ g−1 ∗ g−1 ∗ R ∗ (D2h+Dh ∗Dh),

(Ř, h ◦ h) = g−1 ∗ g−1 ∗ g−1 ∗ g−1 ∗ R ∗ R,
(R̄h,DdDh) = g−1 ∗ g−1 ∗ g−1 ∗ g−1(D2h ∗D2h+ h ∗ R),
〈Wh, d

Dh〉 =
∫

M

(g−1 ∗ g−1 ∗ g−1 ∗ g−1 ∗ R ∗Dh ∗Dh)dvg,

((Ř)′(h), h) = g−1 ∗ g−1 ∗ g−1 ∗ g−1 ∗ R ∗ h ∗ (R ∗ h+D2h),

(|R|p)′(h) = |R|p−2 ∗ g−1 ∗ g−1 ∗ g−1 ∗ g−1 ∗ (R ∗D2h+ R ∗ R ∗ h),
〈(δD)′(h)D∗(R) = g−1 ∗ g−1 ∗ g−1 ∗ g−1 ∗ d2h ∗ h ∗ R.

Combining the above equations we obtain the required result. �

Proof of Proposition 3. Choose a neighborhood U of g in C2,α-topology such that the
following conditions hold:

(i) Lemmas 6.1 and 6.3 hold on U.
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(ii) Let g̃ = g + θ1 ∈ U . Then using Lemma 6.1 we have θ̃ satisfying the conditions
given in Lemma 6.1. We can assume g + t θ̃ ∈ U for all t ∈ [0, 1].
(iii) Since g is L2,2-stable, we can assume that for any g̃ ∈ U with V (g̃) = V (g),
H̃g(h, h) > 0 for all h ∈ W .

We have

R̃p(g + θ̃ ) = R̃p(e
cφ∗g̃) = R̃p(φ

∗g̃) = R̃p(g̃) = R̃p(g + θ1).

Define

γ (t) = g + t θ̃ ,

γ (t) ∈ U for t ∈ [0, 1]. Let

a(t) = R̃p(γ (t)).

Then a(0) = R̃p(g), a(1) = R̃p(g + θ̃ ) and a′(0) = 0. Since θ̃ ∈ W,

a′′(t) = H̃γ (t)(θ̃ , θ̃ ) > 0.

Therefore,

a(1)− a(0) =
∫ 1

0

∫ 1

0
a′′(st)dsdt > 0.

If R̃p(g̃) = R̃p(g), then θ̃ = 0. Hence g̃ is isometric to g. This completes the proof. �

The following corollary is an immediate consequence of this proposition.

COROLLARY 6.1

Let (M, g) be a closed Riemannian manifold with dimension n ≥ 3. If (M, g) is one of
the following then g is a strict local minimizer for Rp for the indicated values of p:

(i) A spherical space form and p ∈ [2,∞).
(ii) A hyperbolic manifold and p ∈ [ n2 ,∞).

(iii) A product of spherical space forms and p ∈ [2, n].
(iv) A product of hyperbolic manifolds and p ∈ [ n2 , n].
Proof. In light of Proposition 3, it is sufficient to prove that (M, g) is L2,2-stable. Define

‖h‖2
1 = ‖D∗Dh‖2 + ‖Dh‖2 + ‖h‖2.

From the proof of Theorem 1.1, we have that there exists a positive constant k such that
H(h, h) ≥ k‖h‖2

1 for all h ∈ W . When (M, g) has unit volume one can easily check that
H̃ (h, h) = H(h, h). Hence to prove the corollary it is sufficient to prove that ‖.‖L2,2 -norm
and ‖.‖1-norm are equivalent.

Since M is compact and D∗D is an elliptic operator using elliptic estimate, we have
C > 0 such that

‖h‖2
L2,2 ≤ C[‖D∗Dh‖2 + ‖h‖2].
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Therefore, ‖h‖2
L2,2 ≤ C‖h‖2

1. Since at every point |D2h| > |D∗Dh| we have ‖h‖2
1 ≤

‖h‖2
L2,2 . Hence, the proof follows. �

As a consequence, we have the following:

COROLLARY 6.2

Let (M, g) be a spherical space form or product of spherical space forms. There exists a
neighborhood U of g in M such that for every g0 ∈ U ,

(i) If Rp(g0) < Rp(g) for any p > n
2 , then V (g0) > V (g).

(ii) If Rp(g0) < Rp(g) for any p ∈ [2, n
2 ), then V (g0) < V (g).

(iii) If Rp(g0) ≥ Rp(g) for any p ∈ [2,∞) and V (g0) = V (g), then g0 is isometric
to g.

COROLLARY 6.3

Let (M, g) be a compact hyperbolic manifold or product of compact hyperbolic mani-
folds. There exists a neighborhood V of g in M such that for every g1 ∈ V ,

(i) If Rp(g1) < Rp(g) for any p ∈ ( n2 , n), then V (g1) > V (g).
(ii) If Rp(g1) ≥ Rp(g) for any p ∈ [ n2 , n] and V (g1) = V (g), then g1 is isometric to g.

Remark 6.2. Consider the Lie group SU(2) with bi-invariant metric g which is isometric
to the standard sphere S3. Let g̃(t), t > 0 denote the volume normalized Berger’s collaps-
ing metrics on SU(2). Suppose R̃p(t) is the restriction of R̃p on g̃(t). Since R̃p(t) → 0
as t → 0 and R̃p(t) has a minima at g̃(1), R̃p(t) has a maxima g̃(to) for some to between
0 and 1. g̃(to) is precisely the critical metric for R̃p which is exhibited by Lamontagne in
[8] for p = 2.

Acknowledgements

The author would like to thank Harish Seshadri for suggesting this problem and for his
guidance, Atreyee Bhattacharya and H. A. Gururaja for some useful discussions related
to this article. This work was supported by CSIR and partially supported by UGC Center
for Advanced Studies.

References

[1] Anderson M T, Degeneration of metrics with bounded curvature and applications to crit-
ical metrics of Riemannian functional, Proc. Symposia in Pure Math. 54(Part 3) (1993)
53–79

[2] Anderson M T, Extrema of curvature functionals on the space of metrics on 3-manifolds,
Calc. Var. Partial Differential Equations 5(3) (1997) 199–269

[3] Besse A L, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3)
[Results in Mathematics and Related Areas (3)] (1987) (Berlin: Springer-Verlag) vol. 10

[4] Besson G, Courtois G and Gallot S, Volume et entropie minimale des espaces localement
symétriques, Invent. Math. 103 (1991) 417–445

[5] Berger M and Ebin D G, Some decompositions of the space of symmetric tensors on a
riemannian manifold, J. Differential Geometry 3 (1969) 379–392



On the stability of Rp 409

[6] Berger M, Quelques formules de variation pour une structure riemannienne, Ann. Sci.
Ecole Norm. Sup. 4e série 3 (1970) 285–294

[7] Gursky M J and Viaclovsky J A, Rigidity and stability of Einstein metrics for quadratic
functionals, arXiv:1105.4648v1 [math.DG] 23 May 2011

[8] Lamontagne F, A critical metric for the L2-norms of the curvature tensor on S3, Proc.
Amer. Math. Soc. 126(2) (1998) 589–593

[9] Muto Y, Curvature and critical Riemannian metrics, J. Math. Sci. Japan 26 (1974) 686–
697

http://arXiv.org/abs/1105.4648

	On the stability of the bold0mu mumu LL383LLLLbold0mu mumu pp383pppp-norm of the Riemannian curvature tensor
	Abstract
	Introduction
	Index of notations and definitions
	Gradient of Rp
	Second variation at space forms
	Proof of Lemma 4.1
	Transverse-traceless variations
	Conformal variations

	Second variation at product of space forms
	Transverse-traceless variations
	Conformal variations

	Local minimization
	References


