| Proceedings Mathematical Sciences | |
| Gaussian Curvature on Hyperelliptic Riemann Surfaces | |
| Abel Castorena1  | |
| [1] Centro de Ciencias Matemáticas (Universidad Nacional Autónoma de México, Campus Morelia) Apdo. Postal - Xangari, C.P. 0 Morelia, Michoacán, México$$ | |
| 关键词: Hyperelliptic curve; Weierstrass points; Gaussian curvature.; | |
| DOI : | |
| 学科分类:数学(综合) | |
| 来源: Indian Academy of Sciences | |
PDF
|
|
【 摘 要 】
Let ð¶ be a compact Riemann surface of genus $g ≥ 1, ðœ”_1,ldots,ðœ”_g$ be a basis of holomorphic 1-forms on ð¶ and let $H=(h_{ij})^g_{i,j=1}$ be a positive definite Hermitian matrix. It is well known that the metric defined as $ds_H^2=sum^g_{i,j=1}h_{ij}ðœ”_iotimes overline{ðœ”_j}$ is a K"a hler metric on ð¶ of non-positive curvature. Let $K_H:C→ mathbb{R}$ be the Gaussian curvature of this metric. When ð¶ is hyperelliptic we show that the hyperelliptic Weierstrass points are non-degenerated critical points of $K_H$ of Morse index +2. In the particular case when ð» is the 𑔠× ð‘” identity matrix, we give a criteria to find local minima for $K_H$ and we give examples of hyperelliptic curves where the curvature function $K_H$ is a Morse function.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912040507091ZK.pdf | 256KB |
PDF