| Proceedings Mathematical Sciences | |
| Holomorphic Two-Spheres in the Complex Grassmann Manifold ðº(ð‘˜, ð‘›) | |
| Xiaowei Xu1  Xu Zhong2  Xiaoxiang Jiao3  | |
| [1] $$;Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 00, People’s Republic of China$$;School of Mathematical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 000, People’s Republic of China$$ | |
| 关键词: Moving frame; totally geodesic; Gaussian curvature.; | |
| DOI : | |
| 学科分类:数学(综合) | |
| 来源: Indian Academy of Sciences | |
PDF
|
|
【 摘 要 】
In this paper, we study the non-degenerate holomorphic $S^2$ in the complex Grassmann manifold ðº(ð‘˜, ð‘›), 2𑘠≤ ð‘›, by the method of moving frame. For a non-degenerate holomorphic one, there exists globally defined positive functions $ðœ†_1,ldots,ðœ†_k$ on $S^2$. We first show that the holomorphic $S^2$ in $G(k, 2k)$ is totally geodesic if these $,ðœ†_i$ are all equal. Conversely, for any totally geodesic immersion ð‘“ from $S^2$ into $G(k, n)$, we prove that $f(S^2)subset G(k, 2k)$ up to $U(n)$-transformation, $ðœ†_i=frac{1}{sqrt{k}}$, the Gaussian curvature $K=frac{4}{k}$ and ð‘“ is given by $(z_0,z_1)mapsto(z_0 I_k,z_1 I_k,0)$, in terms of homogeneous coordinate.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912040506999ZK.pdf | 265KB |
PDF