期刊论文详细信息
Proceedings Mathematical Sciences
Remark on an Infinite Semipositone Problem with Indefinite Weight and Falling Zeros
G A Afrouzi3  S Shakeri2  N T Chung1 
[1] $$;Department of Mathematics and Informatics, Quang Binh University, Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam$$;Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran$$
关键词: Infinite semipositone problems;    indefinite weight;    falling zeros;    sub-supersolution method.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

In this work, we consider the positive solutions to the singular problemegin{equation*}egin{cases}-𝛥 u=am(x)u-f(u)-frac{c}{u^𝛼} & ext{in}quad𝛺, u=0 & ext{on}quad𝜕𝛺,end{cases}end{equation*}where $0 < 𝛼 < 1,a>0$ and $c>0$ are constants, 𝛺 is a bounded domain with smooth boundary 𝜕𝛺,𝛥 is a Laplacian operator, and $f:[0,∞]longrightarrowmathbb{R}$ is a continuous function. The weight functions $m(x)$ satisfies $m(x)in C(𝛺)$ and $m(x)>m_0>0$ for $xin𝛺$ and also $|m|_∞=l < ∞$. We assume that there exist $A>0, M>0,p>1$ such that $alu-M≤ f(u)≤ Au^p$ for all $uin[0,∞)$. We prove the existence of a positive solution via the method of sub-supersolutions when $m_0 a>frac{2𝜆_1}{1+𝛼}$ and 𝑐 is small. Here 𝜆1 is the first eigenvalue of operator -𝛥 with Dirichlet boundary conditions.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040507031ZK.pdf 152KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:4次