Proceedings Mathematical Sciences | |
Remark on an Infinite Semipositone Problem with Indefinite Weight and Falling Zeros | |
G A Afrouzi3  S Shakeri2  N T Chung1  | |
[1] $$;Department of Mathematics and Informatics, Quang Binh University, Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam$$;Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran$$ | |
关键词: Infinite semipositone problems; indefinite weight; falling zeros; sub-supersolution method.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
In this work, we consider the positive solutions to the singular problemegin{equation*}egin{cases}-𛥠u=am(x)u-f(u)-frac{c}{u^ð›¼} & ext{in}quadð›º, u=0 & ext{on}quadðœ•ð›º,end{cases}end{equation*}where $0 < 𛼠< 1,a>0$ and $c>0$ are constants, 𛺠is a bounded domain with smooth boundary ðœ•ð›º,𛥠is a Laplacian operator, and $f:[0,∞]longrightarrowmathbb{R}$ is a continuous function. The weight functions $m(x)$ satisfies $m(x)in C(ð›º)$ and $m(x)>m_0>0$ for $xinð›º$ and also $|m|_∞=l < ∞$. We assume that there exist $A>0, M>0,p>1$ such that $alu-M≤ f(u)≤ Au^p$ for all $uin[0,∞)$. We prove the existence of a positive solution via the method of sub-supersolutions when $m_0 a>frac{2ðœ†_1}{1+ð›¼}$ and ð‘ is small. Here ðœ†1 is the first eigenvalue of operator -𛥠with Dirichlet boundary conditions.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040507031ZK.pdf | 152KB | download |