期刊论文详细信息
Proceedings Mathematical Sciences | |
Split Malcev Algebras | |
Manuel Forero Piulestán1  Antonio J Calderón MartÃn2  José M Sánchez Delgado1  | |
[1] $$;Departamento de Matemáticas, Universidad de Cádiz, 0 Puerto Real, Cádiz, Spain$$ | |
关键词: Malcev algebras; structure theory; roots; root spaces.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras ð‘€ is of the form $M=mathcal{U}+sum_jI_j$ with $mathcal{U}$ a subspace of the abelian Malcev subalgebra ð» and any $I_j$ a well described ideal of ð‘€ satisfying $[I_j, I_k]=0$ if 𑗠≠ð‘˜. Under certain conditions, the simplicity of ð‘€ is characterized and it is shown that ð‘€ is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506983ZK.pdf | 203KB | download |