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Abstract. We study the structure of split Malcev algebras of arbitrary dimension over
an algebraically closed field of characteristic zero. We show that any such algebras M
is of the form M = U + ∑

j I j with U a subspace of the abelian Malcev subalgebra H
and any I j a well described ideal of M satisfying [I j , Ik ] = 0 if j �= k. Under certain
conditions, the simplicity of M is characterized and it is shown that M is the direct sum
of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.
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1. Introduction and preliminaries

The class of Malcev algebras contains one of the Lie algebras and so a question arises
whether some known results on Lie algebras can be extended to the framework of Malcev
algebras (see [4, 7, 9, 10]). In the present paper, we are interested in studying the structure
of arbitrary Malcev algebras by focussing on the split ones. After introducing the concept
of split Malcev algebra as the natural extension of one of the split Lie algebra (see [1, 6]),
we improve in §2 the techniques of connections of roots introduced for split Lie algebras
and split Lie triple systems in [1, 2], so as to develop a theory of connections of roots
for split Malcev algebras M which let us prove the first decompositions of M . Finally, in
§3 and under certain conditions, the simplicity of M is characterized and it is shown that
M is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-
Lie Malcev algebras. Throughout this paper, K denotes an algebraically closed field of
characteristic zero.

DEFINITION 1.1

Denote by H a maximal abelian subalgebra (MASA) of a Malcev algebra (M, [·, ·]). For
a linear functional α : H −→ K, we define the root space of M associated to α as the
subspace Mα = {vα ∈ M : [h, vα] = α(h)vα for any h ∈ H}. The elements α ∈ H∗
satisfying Mα �= 0 are called roots of M and we denote by � := {α ∈ H∗ \{0} : Mα �= 0}
the root system of M . We say that M is a split Malcev algebra if M = H ⊕ (

⊕
α∈� Mα).

We also say that a root system � is symmetric if it satisfies that α ∈ � implies −α ∈ �.
It is clear that the root space associated to the zero root satisfies M0 = H, and that split
Lie algebras are examples of split Malcev algebras. As in the finite dimensional case

181



182 Antonio J Calderón Martín et al.

[3, 5], we can show that if [Mα, Mβ ] �= 0 with β �= α then α + β ∈ � ∪ {0} and
[Mα, Mβ ] ⊆ Mα+β; and that if [Mα, Mα] �= 0 then [Mα, Mα] ⊆ M2α + M−α .

2. Connections of roots: Decompositions

In the following, M denotes a split Malcev algebra with a symmetric root system �. Let
us denote by

� = {α ∈ � : [Mα, M−α] �= 0}
∪ {α ∈ � : [[Mβ, M−β ], Mα] �= 0 for some β ∈ �}.

We associate to any α ∈ � the symbol θα and denote �� = {θα : α ∈ �}. Let us
define the mapping + : (� ∪ ��) × � → H∗ ∪ ��, where H∗ is the dual space of H ,
as follows:

• For α ∈ �, α + (−α) =
{

θα, if α ∈ �,
0, if α /∈ �

.

• For α, β ∈ � with β �= −α, we define α + β ∈ H∗ as the usual sum of linear
functionals, that is (α + β)(h) = (α + β)(h) = α(h) + β(h) for any h ∈ H.

• For θα ∈ �� and β ∈ �,

θα +β =
{

β, if either [[Mα, M−α], Mβ ] �= 0 or [[Mβ, M−β ], Mα] �= 0,
0, otherwise,

where 0 denotes the zero root.

Since α ∈ � implies −α ∈ �, we get that if α + (−α) = θα then −α + α = θ−α . The
below lemma is a direct consequence of the above definition.

Lemma 2.1. The following assertions hold.

(1) For any α ∈ � and β ∈ � such that θα + β = β we have

(i) β ∈ � and β + (−β) = θβ .
(ii) θβ + α = α and θ−α + (−β) = −β.

(2) For any α, β, γ, δ ∈ � we have

(i) if α + β = δ, then δ + (−β) = α and −α + (−β) = −δ;
(ii) if (α + β) + γ = δ with α + β ∈ ��, then β = −α, δ = γ , δ + (−γ ) = θγ ,

(δ + (−γ )) + (−β) = α, −α + (−β) = θ−α and (−α + (−β)) + (−γ ) = −δ.

DEFINITION 2.1

Let α and β be two nonzero roots. We say that α is connected to β if there exist
α1, . . . , αn ∈ � such that

(1) α1 = α;
(2) {α1 + α2, (α1 + α2) + α3, . . . , (· · · ((α1 + α2) + α3) + · · ·) + αn−1} ⊂ � ∪ ��;
(3) ((· · · ((α1 + α2) + α3) + · · ·) + αn−1) + αn ∈ ±β.

We also say that {α1, . . . , αn} is a connection from α to β.
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PROPOSITION 2.1

The relation ∼ in �, defined by α ∼ β if and only if α is connected to β, is of equivalence.

Proof. {α} is a connection from α to itself and therefore α ∼ α. Let us see the symmetric
character of ∼. If α ∼ β, there is a connection {α1, α2, α3, . . . , αn−1, αn} from α to β. If
n = 1, then α1 = α = ±β and so {β} is a connection from β to α. Suppose n ≥ 2. We can
distinguish two possibilities. In the first one ((· · · ((α1 +α2)+α3)+···)+αn−1)+αn = β

and in the second one

((· · · ((α1 + α2) + α3) + · · ·) + αn−1) + αn = −β. (1)

Suppose we have the first one. By the symmetry of �, we can consider the set of nonzero
roots {β,−αn,−αn−1, . . . ,−α3,−α2} ⊂ �. Let us show that this set is a connection
from β to α. Definition 2.1(2) gives us two options for the expression (· · · ((α1 + α2) +
α3)+· · ·)+αn−1. If (· · · ((α1 + α2) + α3) + · · ·) + αn−1 ∈ �, Lemma 2.1(2(i)) implies

β + (−αn) = (· · · ((α1 + α2) + α3) + · · ·) + αn−1 ∈ �. (2)

If (· · · ((α1 + α2) + α3) + · · ·) + αn−1 ∈ ��, then necessarily n ≥ 3 and

(· · · ((α1 + α2) + α3) + · · ·) + αn−2 ∈ �.

Lemma 2.1(2(ii)) shows β + (−αn) = θαn ∈ �� and

(β + (−αn)) + (−αn−1) = (· · · ((α1 + α2) + α3) + · · ·) + αn−2 ∈ �. (3)

Now, we can argue in a similar way from equations (2) and (3), taking into account
Lemma 2.1(2), to conclude (· · · ((β + (−αn)) + (−αn−1)) + · · · ) + (−α2) = α1 and so
{β,−αn,−αn−1, . . . ,−α3,−α2} is a connection from β to α.

Suppose we are in the second possibility, that is, as given by equation (1). Let us show
that {β, αn, αn−1, . . . , α3, α2} is a connection from β to α. We begin by observing that,
taking into account condition (2) in Definition 2.1, a recursive argument with Lemma
2.1(2) and the fact that if α + (−α) = θα , then −α + α = θ−α . Let us assert that if
(· · · ((α1 + α2) + α3) + · · · ) + αi ∈ � for i = 2, . . . , n, then

(· · · (((−α1) + (−α2)) + (−α3)) + · · · ) + (−αi )

= −((· · · ((α1 + α2) + α3) + · · · ) + αi ),

and that if (· · · ((α1 + α2) + α3) + · · · ) + αi = θ−αi ∈ �� for i = 2, . . . , n − 1,
with ((· · · ((α1 + α2) + α3) + · · · ) + αi ) + αi+1 ∈ �, then

(· · · (((−α1) + (−α2)) + (−α3)) + · · · ) + (−αi ) = θαi

and

((· · · (((−α1) + (−α2)) + (−α3)) + · · · ) + (−αi )) + (−αi+1)

= −(((· · · ((α1 + α2) + α3) + · · · ) + αi ) + αi+1).

In particular, by considering equation (1), we have

β = ((· · · (((−α1) + (−α2)) + (−α3)) + · · ·) + (−αn−1)) + (−αn). (4)
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Taking into account the above observation, we can argue as in the first possibility
that {β, αn, αn−1, . . . , α3, α2} is a connection from β to α and to conclude that ∼ is
symmetric.

Finally, suppose α ∼ β and β ∼ γ , and write {α1, . . . , αn} for a connection from α

to β and {β1, . . . , βm} for a connection from β to γ . If m = 1, then γ ∈ ±β and so
{α1, . . . , αn} is a connection from α to γ . If m ≥ 2, we have that {α1, . . . , αn, β2, . . . , βm}
is a connection from α to γ in case (· · · (α1 + α2) + · · · ) + αn = β, and taking into
account the observation given by equations (1) and (4), that {α1, . . . , αn,−β2, . . . ,−βm}
is a connection from α to γ in case (· · · (α1 + α2) + · · · ) + αn = −β. Therefore α ∼ γ

and ∼ is of equivalence. �

Given α ∈ �, we denote by �α = {β ∈ � : α and β are connected}, and define
H�α := spanK{[Mβ, M−β ] : β ∈ �α} and V�α := ⊕

β∈�α
Mβ . It is easy to verify that

M�α := H�α ⊕ V�α is a Malcev subalgebra of M that we call the Malcev subalgebra
associated to �α .

PROPOSITION 2.2

If γ /∈ �α , then [Mβ, Mγ ] = 0 and [[Mβ, M−β ], Mγ ] = 0 for any β ∈ �α .

Proof. Let us suppose that there exists β ∈ �α such that [Mβ, Mγ ] �= 0 with γ /∈ �α .
Then γ �= ±β and β + γ ∈ �. From here, we easily get that α is connected to β + γ ,
that is, β + γ ∈ �α . Taking into account −β, β + γ ∈ �α , we deduce γ ∈ �α , a
contradiction. Therefore [Mβ, Mγ ] = 0 for any β ∈ �α and γ /∈ �α . Finally, suppose
[[Mβ, M−β ], Mγ ] �= 0. Then {β,−β, γ } is a connection from β to γ and so γ ∈ �α , a
contradiction. Hence, [[Mβ, M−β ], Mγ ] = 0. �

Theorem 2.1. The following assertions hold:
1. For any α ∈ �, the Malcev subalgebra M�α = H�α ⊕ V�α of M associated to �α is

an ideal of M.
2. If M is simple, then there exists a connection from α to β for any α, β ∈ � and

H = ∑
α∈�[Mα, M−α].

3. For a vector space complement U of spanK{[Mα, M−α] : α ∈ �} in H , we have
M = U + ∑

[α]∈�/∼ I[α], where any I[α] is one of the ideals M�α of M described in
item (1), satisfying [I[α], I[β]] = 0 if [α] �= [β].

Proof.

(1) By Proposition 2.2, we get

[M�α , M] =
[ ⊕

β∈�α

[Mβ, M−β ] ⊕
⊕

β∈�α

Mβ, H ⊕
( ⊕

β∈�α

Mβ

)

⊕
( ⊕

γ /∈�α

Mγ

)]

⊂ M�α .
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(2) The simplicity of M implies M�α = M . Therefore �α = � and H =∑
α∈�[Mα, M−α].

(3) Consequence of Proposition 2.1(1) and Proposition 2.2.

COROLLARY 2.1

If the center of M is zero, (Z(M) = 0), and [M, M] = M , then M is the direct sum of
the ideals given in Theorem 2.1, M = ⊕

[α]∈�/∼ I[α].

Proof. From [M, M] = M , we have M = ∑
[α]∈�/∼ I[α]. The direct character of the sum

now follows from the facts [I[α], I[β]] = 0, if [α] �= [β] and Z(M) = 0. �

3. The simple components

Recall that any simple Malcev algebra over K is either a Lie algebra or a seven-
dimensional algebra over its centroid, denoted by C0. This simple non-Lie Malcev algebra
is a split one under the decomposition C0 = H ⊕ (C0)ρ ⊕ (C0)−ρ, where H is a
one-dimensional MASA of C0.

The following lemma is consequence of the fact that the set of multiplications by ele-
ments in H is a commuting set of diagonalizable endomorphisms, and I is invariant under
this set.

Lemma 3.1. Let M = H ⊕ (
⊕

α∈�(I ∩ Mα) be a split Malcev algebra. If I is an ideal
of M , then I = (I ∩ H) ⊕ (

⊕
α∈�(I ∩ Mα)).

We take the following definitions from the theory of split Lie algebras and split Lie
triple systems [2, 6].

DEFINITION 3.1

We say that a split Malcev algebra M is root-multiplicative if α, β ∈ � with α �= β, such
that α + β ∈ � or θα + β ∈ �. Then [Mα, Mβ ] = Mα+β or [[Mα, M−α], Mβ ] = Mβ

respectively.
We also say that a nonzero root α of a split Malcev algebra M is abelian if there exists

0 �= eα ∈ Mα such that [eα, M−α] = 0.

We are interested in split Malcev algebras with no abelian nonzero roots. As examples
of root-multiplicative split Malcev algebras satisfying this fact we have the non-Lie simple
Malcev algebra C0 (see the multiplication table in (§6 of [8]), and so all are of finite
dimensional semisimple Malcev algebras (over an algebraically closed field). We also
have semisimple separable L∗-algebras and semisimple locally finite split Lie algebras
over a field of characteristic zero [6].

Theorem 3.1. Let M be a root-multiplicative split Malcev algebra with no abelian
nonzero roots and with Z(M) = 0. Then M is simple if and only if it has all its nonzero
roots connected and H = ∑

α∈�[Mα, M−α].
Proof. The first implication is Theorem 2.1(2). To prove the converse, consider I a
nonzero ideal of L . By Lemma 3.1, we can write I = (I ∩ H) ⊕ (

⊕
α∈�I

(I ∩ Mα)) with
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�I = {α ∈ � : I ∩ Mα �= 0} and, taking into account Z(M) = 0, with �I �= ∅. We
can assert that there exists α ∈ �I such that α(I ∩ H) �= 0. Indeed, first observe that
I ∩ H �= 0, because in the opposite case we have that for any 0 �= eα ∈ I ∩ Mα nec-
essarily [eα, M−α] = 0, α is an abelian root of M which is a contradiction. Second, if
α(I ∩ H) = 0 for any α ∈ �I , then [I ∩ H, Mα] = 0. As we also have [I ∩ H, H ] = 0 and
[I ∩ H, Mβ ] = 0 for any β ∈ � \ �I , we conclude I ∩ H ⊂ Z(M) = 0, which contra-
dicts the fact that I ∩ H �= 0. Let us show that H ⊂ I . By the above, we can take α0 ∈ �I

satisfying α0(I ∩ H) �= 0. From here, [I ∩ H, Mα0 ] = Mα0 and so Mα0 ⊂ I . Now, for
any β ∈ � \ {±2α0}, the fact that α0 and β are connected and the root-multiplicativity of
M give us a connection {γ1, . . . , γr } from α0 to β such that

γ1 = α0, γ1+γ2, (γ1+γ2)+γ3, . . . , (· · · (γ1+γ2)+γ3)+· · · )+γr−1 ∈ �∪��,

(· · · (γ1 + γ2) + γ3) + · · · ) + γr ∈ ±β and [[· · · [[Mα0 , Mγ2 ], Mγ3 ], · · · ], Mγr ] = Mεβ,

with ε ∈ ±1. From here, we deduce that either Mβ ⊂ I or M−β ⊂ I. In both cases
[Mβ, M−β ] ⊂ I. From here, the fact that H = ∑

β∈�[Mβ, M−β ] finally gives us H \
{[M2α0, M−2α0 ]} ⊂ I . Consider now the bracket [Mα0 , M−α0 ]. Since α0 is a non abelian
root, this product is nonzero and taking into account Z(M) = 0, there exists δ ∈ � such
that [[Mα0 , M−α0 ], Mδ] �= 0, being so Mδ ⊂ I . If δ ∈ ±α0 then [[Mα0 , M−α0 ], M2α0 ] =
M2α0 ⊂ I , and in case δ /∈ ±α0, then 2δ /∈ ±2α0 and we can argue from δ as we did
above with α0 to get [M2α0, M−2α0 ] ⊂ I . Consequently we can assert H ⊂ I. Given now
any α ∈ �, the facts α �= 0 and H ⊂ I show [H, Mα] = Mα ⊂ I . We conclude I = M
and therefore M is simple. �

Theorem 3.2. Let M be a root-multiplicative split Malcev algebra with no abelian
nonzero roots and satisfying Z(M) = 0, [M, M] = M. Then M is the direct sum of the
family of its minimal ideals, each one being a simple split Malcev algebra having all its
nonzero roots connected.

Proof. By Corollary 2.1, M = ⊕
[α]∈�/∼ I[α] is the direct sum of the ideals I[α] = H�α ⊕

V�α having any I[α] its root system, �α , with all of its roots connected. Even more, �α

has all of its roots �α-connected (connected through roots in �α). We also have that
any of the I[α] is root-multiplicative as a consequence of the root-multiplicativity of M .
Clearly I[α] have no abelian nonzero roots, and finally ZI[α](I[α]) = 0 where ZI[α](I[α])
denotes the center I[α] in I[α], as a consequence of [I[α], I[β]] = 0 if [α] �= [β] (Theorem
2.1(3)), and Z(M) = 0. We can apply Theorem 3.1 to any I[α] so as to conclude I[α] is
simple. It is clear that the decomposition M = ⊕

[α]∈�/∼ I[α] satisfies the assertions of
the theorem. �

In the following corollary the term semisimple algebra means direct sum of simple
algebras.

COROLLARY 3.1

Let M be a root-multiplicative split Malcev algebra with no abelian nonzero roots and
satisfying Z(M) = 0, [M, M] = M. Then M is the direct sum of a semisimple split
Lie algebra and a direct sum of simple non-Lie Malcev algebras (seven dimensional over
their centroid).
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