期刊论文详细信息
Proceedings Mathematical Sciences
The Cohomology of Orbit Spaces of Certain Free Circle Group Actions
Hemant Kumar Singh2  Tej Bahadur Singh1 
[1] $$;Department of Mathematics, University of Delhi, Delhi 0 00, India$$
关键词: Characteristic class;    finitistic space;    free action;    index;    spectral sequence.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

Suppose that $G=mathbb{S}^1$ acts freely on a finitistic space 𝑋 whose (mod 𝑝) cohomology ring is isomorphic to that of a lens space $L^{2m-1}(p;q_1,ldots,q_m)$ or $mathbb{S}^1×mathbb{C}P^{m-1}$. The mod 𝑝 index of the action is defined to be the largest integer 𝑛 such that $𝛼^n≠ 0$, where $𝛼in H^2(X/G;mathbb{Z}_p)$ is the nonzero characteristic class of the $mathbb{S}^1$-bundle $mathbb{S}^1hookrightarrow X→ X/G$. We show that the mod 𝑝 index of a free action of 𝐺 on $mathbb{S}^1×mathbb{C}P^{m-1}$ is 𝑝-1, when it is defined. Using this, we obtain a Borsuk–Ulam type theorem for a free 𝐺-action on $mathbb{S}^1×mathbb{C}P^{m-1}$. It is note worthy that the mod 𝑝 index for free 𝐺-actions on the cohomology lens space is not defined.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040506974ZK.pdf 240KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:6次