Proceedings Mathematical Sciences | |
The Cohomology of Orbit Spaces of Certain Free Circle Group Actions | |
Hemant Kumar Singh2  Tej Bahadur Singh1  | |
[1] $$;Department of Mathematics, University of Delhi, Delhi 0 00, India$$ | |
关键词: Characteristic class; finitistic space; free action; index; spectral sequence.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Suppose that $G=mathbb{S}^1$ acts freely on a finitistic space ð‘‹ whose (mod ð‘) cohomology ring is isomorphic to that of a lens space $L^{2m-1}(p;q_1,ldots,q_m)$ or $mathbb{S}^1×mathbb{C}P^{m-1}$. The mod ð‘ index of the action is defined to be the largest integer ð‘› such that $ð›¼^n≠0$, where $ð›¼in H^2(X/G;mathbb{Z}_p)$ is the nonzero characteristic class of the $mathbb{S}^1$-bundle $mathbb{S}^1hookrightarrow X→ X/G$. We show that the mod ð‘ index of a free action of ðº on $mathbb{S}^1×mathbb{C}P^{m-1}$ is ð‘-1, when it is defined. Using this, we obtain a Borsuk–Ulam type theorem for a free ðº-action on $mathbb{S}^1×mathbb{C}P^{m-1}$. It is note worthy that the mod ð‘ index for free ðº-actions on the cohomology lens space is not defined.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506974ZK.pdf | 240KB | download |